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Part 1: Introduction: two classical theorems

Given a smooth compact surface M, the choice of a Riemannian
metric gives a Laplace operator which has a discrete set of
eigenvalues λ0 = 0 < λ1 ≤ λ2 ≤ . . .

The following result was proven by J. Hersch in 1970.

Hersch Theorem: For any smooth metric g on S2 we have
λ1(g)A(g) ≤ 8π with equality if and only if g is a constant
curvature metric.
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Weinstock’s Theorem

In 1954 R. Weinstock proved the following theorem.

Weinstock Theorem: Let M be a simply connected surface with
boundary and g a smooth metric up to ∂M. We then have the
inequality σ1(g)L(g) ≤ 2π with equality if and only if (M, g) is
equivalent to the unit disk in R2.

In the theorem, L(g) denotes the length of ∂M with respect g and
σ1(g) is the first nonzero Steklov eigenvalue of g .



Steklov eigenvalues I

(M, ∂M) Riemannian manifold

Given a function u ∈ C∞(∂M), let û be the harmonic extension of
u: {

∆g û = 0 on M,

û = u on ∂M.

The Dirichlet-to-Neumann map is the map

L : C∞(∂M)→ C∞(∂M)

given by

Lu =
∂û

∂ν
.

(non-negative, self-adjoint operator with discrete spectrum)

Eigenvalues σ0, σ1, σ2, , σ3, . . . (Steklov Eigenvalues)



Steklov eigenvalues II

Constant fcns are in the kernel of L
The lowest eigenvalue of L is zero, σ0 = 0

The first nonzero eigenvalue σ1 of L can be characterized
variationally as:

σ1 = inf
u∈C1(∂M),

∫
∂M u=0

∫
M |∇û|2 dvM∫
∂M u2 dv∂M

.

Example: Bm, σk = k , k = 0, 1, 2, . . .
u homogeneous harmonic polynomial of degree k

σ1 = 1 eigenspace x1, . . . , xn



Proof of Weinstock’s theorem I

First recall the statement.

Weinstock Let M be a simply connected surface with
boundary and g a smooth metric

σ1(g)L(g) ≤ 2π = σ1(D)L(∂D)

= only if (M, g) is equivalent to a disk

Proof.
RMT =⇒ ∃ conformal diffeomorphism ϕ : M → D
∃ conformal F : D → D such that∫

∂M
(F ◦ ϕ) ds = 0
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Proof of Weinstock’s theorem II

i.e. WLOG,
∫
∂M ϕ ds = 0. Then, for i = 1, 2,

σ1

∫
∂M

ϕ2
i ds ≤

∫
M
|∇ϕ̂i |2 da

=

∫
M
|∇ϕi |2 da

σ1

∫
∂M

2∑
i=1

ϕ2
i ds ≤

∫
M

2∑
i=1

|∇ϕi |2 da

σ1L(∂M) ≤ 2 A(ϕ(M)) = 2A(D) = 2π

The proof of Hersch’s theorem is similar with the conformal group
of the disk replaced by that of the sphere.



Proof of Weinstock’s theorem II

i.e. WLOG,
∫
∂M ϕ ds = 0. Then, for i = 1, 2,

σ1

∫
∂M

ϕ2
i ds ≤

∫
M
|∇ϕ̂i |2 da

=

∫
M
|∇ϕi |2 da

σ1

∫
∂M

2∑
i=1

ϕ2
i ds ≤

∫
M

2∑
i=1

|∇ϕi |2 da

σ1L(∂M) ≤ 2 A(ϕ(M)) = 2A(D) = 2π

The proof of Hersch’s theorem is similar with the conformal group
of the disk replaced by that of the sphere.



Proof of Weinstock’s theorem II

i.e. WLOG,
∫
∂M ϕ ds = 0. Then, for i = 1, 2,

σ1

∫
∂M

ϕ2
i ds ≤

∫
M
|∇ϕ̂i |2 da

=

∫
M
|∇ϕi |2 da

σ1

∫
∂M

2∑
i=1

ϕ2
i ds ≤

∫
M

2∑
i=1

|∇ϕi |2 da

σ1L(∂M) ≤ 2 A(ϕ(M)) = 2A(D) = 2π

The proof of Hersch’s theorem is similar with the conformal group
of the disk replaced by that of the sphere.



Results for closed surfaces I

Is there an analogue to Hersh’s theorem for other surfaces? In
other words if I take a fixed compact surface M and consider all
smooth metrics on M, which metrics maximize λ1A?

In principle the cases with χ(M) ≥ 0 are understood:

• For S2 the constant curvature metric is the unique maximum by
a result of J. Hersch from 1970.

• For RP2 the constant curvature metric is the unique maximum
by a result of P. Li and S. T. Yau from the 1980s.

• For T 2 the flat metric on the 600 rhombic torus is the unique
maximum by a result of N. Nadirashvili from 1996.
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Results for closed surfaces II

• For the Klein bottle the extremal metric is smooth and unique
but not flat. This follows from work of Nadirashvili (1996 existence
of maximizer), D. Jacobson, Nadirashvili, and I. Polterovich (2006
constructed the metric), and El Soufi, H. Giacomini, and M. Jazar
(2006 proved it is unique).

The case of the torus and the Klein bottle rely on a difficult
existence theorem which was proved by Nadirashvili.

A recent paper by M. Karpukhin determines the extremal metric in
the case of genus 2. The metric is the pullback from the metric on
S2 under a degree 2 branched cover.
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Part 2: Surfaces with boundary

Oriented surfaces with boundary are classified by their genus γ and
the number of boundary components k . Such a surface is
topologically equivalent to a closed surface of genus γ with k
disjoint disks removed. Weinstock’s theorem tells us that for γ = 0
and k = 1 the maximizing metric is the flat metric on the unit disk.

The question we address is what are the maximizing metrics for
more general surfaces with boundary. To be precise, given a
smooth surface M with boundary, is there a smooth metric on M
which maximizes σ1L? If so, can we describe the metric?
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The structure of maximizing metrics

The following result shows that a metric which maximizes σ1L
arises from a free boundary minimal surface in a ball.

Theorem: Let M be a compact surface with nonempty boundary
and assume that g is a metric on M for which σ1L is maximized.
The multiplicity of σ1 is at least two, and there exists a proper
branched minimal immersion ϕ : M → Bn for some n ≥ 2 by first
eigenfunctions which is a homothety on the boundary. The surface
Σ = ϕ(M) is a free boundary minimal surface. The extremal
metric g is equal to a positive constant times the induced metric
on the boundary.



Proof outline I

Step 1: Compute the first variation of the eigenvalue σ(t) for a
smoothly varying path of eigenfunctions ut for a family of metrics
gt with fixed boundary length. This may be computed most easily
by differentiating at t = 0∫

M
‖∇ut‖2

t dat = σ(t)

∫
∂M

u2
t dst .

where gt is a path of metrics with g0 = g . If we denote derivatives
at t = 0 with ‘dots’ we let h = ġ , and the length constraint on the
boundary translates to ∫

∂M
h(T ,T ) ds = 0

where T denotes the oriented unit tangent vector to ∂M.



Proof outline II
Denoting the derivative of σ at t = 0 by σ̇,

σ̇ = −
∫
M
〈τ(u), h〉 da−

∫
∂M

u2h(T ,T ) ds

where τ(u) is the stress-energy tensor of u given by

τ(u)ij = ∂iu∂ju −
1

2
‖∇u‖2gij

Step 2: Assuming that σ1L is maximized for g , show that for any
variation h there exists an eigenfunction u (depending on h) with

Qh(u) :=

∫
M
〈τ(u), h〉 da +

∫
∂M

u2h(T ,T ) ds = 0.

This is accomplished by using left and right hand derivatives to
show that the quadratic form Qh is indefinite and therefore has a
null vector.
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Proof outline III

Step 3: Use the Hahn-Banch theorem in an appropriate Hilbert
space consisting of pairs (p, f ) where p is a symmetric (0, 2) tensor
on M and f a function on ∂M to show that the pair (0, 1) lies in
the convex hull of the pairs (τ(u), u2) for first eigenfunctions u.
This tells us that there are positive a1, . . . , an and eigenfunctions
u1, . . . , un so that∑

a2
i τ(ui ) = 0 on M,

∑
a2
i u2

i = 1 on ∂M.

It then follows that the map ϕ = (a1u1, . . . , anun) is a (possibly
branched) proper minimal immersion in the unit ball Bn. It can
then be checked that ϕ is a homothety on ∂M.



Free boundary minimal submanifolds I

A proper minimal submanifold Σ of the unit ball Bn which is
orthogonal to the sphere at the boundary is called a free boundary
submanifold. These are characterized by the condition that the
coordinate functions are Steklov eigenfunctions with eigenvalue 1;
that is, ∆xi = 0 in ∇ηxi = xi .

The theorem shows that surfaces of this type arise as eigenvalue
maximizers. Such submanifolds arise as min/max solutions for
sweepouts of the ball by relative cycles and so have a natural
variational interpretation.



Free boundary submanifolds II

(Mk , ∂Mk) −→ (Bn, ∂Bn)

M minimal, meeting ∂Bn orthogonally along ∂M
↑ ↑

H = 0 η = ~x

M ⊂ Rn minimal ⇐⇒ ∆Mxi = 0 i = 1, . . . , n
(x1, . . . xn are harmonic)

M meets ∂Bn orthogonally ⇐⇒ ∂xi
∂η = xi , i = 1, . . . , n.



Examples I
1) Mk = Dk ⊂ Bn equatorial k-plane

J.C.C. Nitsche: M2 simply connected in B3 =⇒ M flat disk.
Fraser-S. extended this to Bn for n ≥ 4.

.
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Examples II
3) We expect that there are arbitrarily high genus free boundary
solutions with three boundary components in B3 which converge
to the union of the critical catenoid and a disk through the origin
orthogonal to the axis.

4) Critical Möbius Band

We think of the Möbius band M as R× S1 with the identification
(t, θ) ≈ (−t, θ + π). There is a minimal embedding of M into R4

given by

ϕ(t, θ) = (2 sinh t cos θ, 2 sinh t sin θ, cosh 2t cos 2θ, cosh 2t sin 2θ)

For a unique choice of T0 the restriction of ϕ to [−T0,T0]× S1

defines an embedding into a ball by first Steklov eigenfunctions.

We may rescale the radius of the ball to 1 to get the critical
Möbius band.

Explicitly T0 is the unique positive solution of coth t = 2 tanh 2t.
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Coarse upper bounds

The following result is a combination of bounds obtained with
Fraser together with results of G. Kokarev.

Theorem: (M2, ∂M) oriented Riemannian surface of genus γ
with k boundary components. Then,

σ1 L(∂M) ≤ min{2π(γ + k), 8π[(γ + 3)/2]}

The inequality is strict if γ = 0 and k > 1.

Note: γ = 0, k = 1 simply connected surface: Weinstock.

Question: What is the sharp constant for annuli or other surfaces?
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Part 3: Main theorems

In order to show that the critical catenoid achieves the maximum
of σ1L we must characterize it among the free boundary minimal
annuli.

The next result gives this characterization for the annulus.

Theorem A: Assume that Σ is a free boundary minimal annulus in
Bn such that the coordinate functions are first eigenfunctions.
Then n = 3 and Σ is the critical catenoid.

There is a corresponding result for the Möbius band.

Theorem B: Assume that Σ is a free boundary minimal Möbius
band in Bn such that the coordinate functions are first
eigenfunctions. Then n = 4 and Σ is the critical Möbius band.
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Main theorems on sharp bounds

Let
σ∗(γ, k) = sup

g
σ1 L

where the supremum is over metrics on a surface of genus γ with k
boundary components.

We know σ∗(0, 1) = 2π. The next result identifies σ∗(0, 2).

Theorem 1: For any metric annulus M we have

σ1L ≤ (σ1L)cc

with equality iff M is equivalent to the critical catenoid.
In particular,

σ∗(0, 2) = (σ1L)cc ≈ 4π/1.2.
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Theorem 2: The sequence σ∗(0, k) is strictly increasing in k and
converges to 4π as k tends to infinity. For each k a maximizing
metric is achieved by a free boundary minimal surface Σk in B3 of
area less than 2π. The limit of these minimal surfaces as k tends
to infinity is a double disk, and for large k, Σk is approximately a
pair of nearby parallel plane disks joined by k boundary bridges.

Here is a rough sketch of the surfaces for large k .

Corollary: For every k ≥ 1 there is an embedded minimal surface
in B3 of genus 0 with k boundary components satisfying the free
boundary condition. Moreover these surfaces are embedded by first
eigenfunctions.
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Existence of maximizers

Theorem: For any k ≥ 1 there is a smooth metric on the surface
of genus 0 with k boundary components with the property
σ1L = σ∗(0, k).

• Very roughly the proof involves first controlling the conformal
structure of metrics near the supremum, and then controlling the
metrics themselves.
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Proof of Theorem 1

Theorem 1: For any metric annulus M we have

σ1L ≤ (σ1L)cc

with equality iff M is equivalent to the critical catenoid.
In particular,

σ∗(0, 2) = (σ1L)cc ≈ 4π/1.2.

• there exists a metric on the annulus with σ1L = σ∗(0, 2)

• this maximizing metric arises from a free boundary minimal
immersion of the annulus in the ball by first eigenfunctions

• by the uniqueness result this immersion is congruent to the
critical catenoid



The limit as k goes to infinity

Let Σk ⊂ B3 be a maximizing surface with genus 0 and k
boundary components. We have the following properties.

• Σk does not contain the origin and is embedded and star shaped.
This follows from the fact that the restrictions of the linear
functions have no critical points on their zero set.

• The coarse upper bound implies that A(Σk) ≤ 4π and the star
shaped property implies that each Σk is stable for variations which
fix the boundary. Curvature estimates then imply uniform
curvature bounds in the interior.
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• There is a subsequence of the Σk which converges in a smooth
topology to a smooth limiting minimal surface Σ∞ possibly with
multiplicity. This limit must have multiplicity since otherwise the
limit would be a smooth free boundary solution, and the
convergence would be smooth up to the boundary contradicting
the fact that k →∞.

• It follows from the star shaped condition that the origin lies in
the limiting surface, the surface is a cone (hence a flat disk since it
is smooth), and the multiplicity is 2.

• The limit of A(Σk) is equal to 2A(Σ∞) = 2π. It follows that
σ∗(0, k) = σ1(Σk)L(∂Σk) = 2A(Σk) converges to 4π as claimed.
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The Möbius band

Finally we show that the critical Möbius band uniquely maximizes
σ1L. After some calculation one can see that (σ1L)cmb = 6

√
6π.

Theorem: For any metric on the Möbius band M we have

σ1L ≤ (σ1L)cmb

with equality iff M is equivalent to the critical Möbius band.

The proof follows the same steps as for the critical catenoid.

• we show existence of a smooth maximizing metric on the Möbius
band

• this then gives an immersion into Bn by first eigenfunctions

• by the uniqueness result, this immersion is congruent to the
critical Möbius band
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σ1L. After some calculation one can see that (σ1L)cmb = 6

√
6π.

Theorem: For any metric on the Möbius band M we have
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band

• this then gives an immersion into Bn by first eigenfunctions

• by the uniqueness result, this immersion is congruent to the
critical Möbius band



Statement of Theorem A

Theorem A: Assume that Σ is a free boundary minimal annulus in
Bn such that the coordinate functions are first eigenfunctions.
Then n = 3 and Σ is the critical catenoid.



Theorem A: Proof outline

A multiplicity bound implies that n = 3.

We may assume that Σ is parametrized by a conformal harmonic
map ϕ from M = [−T ,T ]× S1 with coordinates (t, θ).

The vector field X = ∂ϕ
∂θ is then a conformal Killing vector field

along Σ.

Goal: Show that X coincides with a rotation vector field of R3.

The key step in doing this is to show that the three components of
X are first eigenfunctions.

For functions or vector fields Y defined along Σ we consider the
quadratic form Q defined by

Q(Y ,Y ) =

∫
Σ
‖∇Y ‖2 da−

∫
∂Σ
‖Y ‖2 ds.
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Assumption that σ1 = 1 implies: if
∫
∂Σ Y ds = 0 then

Q(Y ,Y ) ≥ 0

with equality ⇐⇒ the components of Y are first eigenfunctions.

It is easy to check that the vector field X = ∂ϕ
∂θ is in the nullspace

of Q. If it were true that
∫
∂Σ X ds = 0, then we could complete

the argument.

The quadratic form Q is also the second variation of 1
2 E provided

that Y is tangent to S2 along ∂Σ.

Find a vector field Y such that Q(Y ,Y ) ≤ 0 and with∫
∂Σ(X − Y ) ds = 0.

It would then follow that Q(X − Y ,X − Y ) ≤ 0

and also, since
∫
∂Σ(X − Y ) ds = 0, Q(X − Y ,X − Y ) ≥ 0,

It would follow that the components of X − Y are first e.f.
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We are not able to find such vector fields directly, so we consider
the second variation of area for normal variations.

Note that for free boundary solutions there is a natural Jacobi field
given by x · ν. It is in the nullspace of the second variation form S
given by:

S(ψ,ψ) =

∫
Σ

(‖∇ψ‖2 − ‖A‖2ψ2) da−
∫
∂Σ
ψ2 ds

where A denotes the second fundamental form of Σ and we are
considering normal variations ψν where ν is the unit normal vector
of Σ. Note that this variation is tangent to S2 along the boundary.



We can show by a subtle argument that for any v ∈ R3

S(v · ν, v · ν) ≤ 0

This is not sufficient for the eigenvalue problem because the
normal deformation does not preserve the conformal structure of Σ
in general.

The way we get around this problem is to consider adding a
tangential vector field Y t to so that Y = Y t + ψν preserves the
conformal structure and is tangent to S2 along ∂Σ. This involves
solving a Cauchy-Riemann equation with boundary condition to
determine Y t .
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This problem is generally not solvable, but has a 1 dimensional
obstruction for its solvability (because Σ is an annulus). We then
get existence for ψ in a three dimensional subspace of the span of
ν1, ν2, ν3, x · ν. We can then arrange the resulting conformal vector
field Y to satisfy the boundary integral condition and we have

Q(Y ,Y ) = S(ψ,ψ) = S(v · ν, v · ν) ≤ 0.



Part 4: Outline of existence proof

We are left with proving Theorem 2 which is the existence and
regularity result under that assumption that the conformal
structures can be controlled for metrics near the maximum. This is
the problem of controlling the boundary measures under the
assumption that we have a controlled conformal background.

One might approach this variational problem by completing the
space of boundary measures in the weak* topology to allow
singular measures. Given a measure µ and a smooth constant
curvature metric g0 we can define σ1(g0, µ) by

σ1(g0, µ) = inf{ E (u)∫
∂M u2 dµ

: u ∈ H1(M)∩C 0(M̄),

∫
∂M

u dµ = 0}.

It is then easy to see that σ1(g0, µ) is upper-semicontinuous in µ,
so we can construct a maximizing probability measure.
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Preliminary remarks

Thus if we define σ∗∗(γ, k) by

σ∗∗(γ, k) = sup{σ1(g0, µ) : µ(∂M) = 1},

then under the assumption of Theorem 2 we can find a maximizing
measure µ.

We then have to deal with the problem of showing that µ is a
smooth measure. This seems to be a very difficult problem; in fact,
it is not clear that σ∗∗(γ, k) = σ∗(γ, k). It could conceivably
happen that the eigenvalue could be made strictly larger by
allowing µ to be singular.

We take a different approach which involves finding a special
maximizing sequence of smooth measures which satisfy a
regularized problem, and showing that these converge weak* to a
smooth measure.
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The regularized problem
Since we have a background conformal metric which we can
control, we use it to regularize our boundary measures. We let
Kt(x , y) denote the heat kernel with respect the boundary
arclength measure induced by g0. Thus Kt(x , y) depends on
x , y ∈ ∂M, but it is zero if x and y lie in different boundary
components.

Given ε > 0 and a measure µ on ∂M we let µε be the smooth
measure µε = λε ds0 where

λε(x) =

∫
∂M

Kε(x , y) dµ(y).

We can then pose (and solve) the regularized problem of realizing
σ∗ε given by

σ∗ε = sup{σ1(g0, µε) : µ, g0}.
Under the hypothesis of Theorem 2 we can assume that the g0 lie
in a compact set of metrics, and because of the regularization we
can construct a maximizing probability measure µ(ε).
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The convergence question

Since the conformal structures are controlled we make the
simplifying assumption that the conformal structure is fixed given
by g0. We hope to show that there is a sequence εi tending to 0 so
that the weak* limit µ of the µi = µ(εi ) is a smooth measure. If we
can do this, then it follows from upper-semicontinuity of σ1(g0, µ)
with respect to µ that

σ1(g0, µ) ≥ σ∗(γ, k).

Since µ is a smooth measure we can write µ = λ ds0 for a smooth
positive function λ on ∂M. We can then extend λ as a smooth
positive function in M which we also call λ, and then it follows
that the smooth metric g = λ2g0 is a smooth maximizing metric.
This will complete the proof of Theorem 2.
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Three basic eigenvalue results

The convergence proof uses three basic results about the
eigenvalue problem. These are important for proving the
convergence.

1) Multiplicity Bound: The multiplicity of σ1 is bounded by 4γ + 3.

2) Sparsity of Nodal Set: There is a constant N depending only on
γ and k so that the number of points on ∂M at which a first
eigenfunction vanishes is bounded by N.

3) Persistence of Nodal Set: If there is a point x ∈ ∂M for which
u(x) = 0, then there is a fixed radius r0 > 0 so that for each
r ≤ r0, the nodal set intersects the circle of radius r centered at x .
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Maximizers for the regularized problem
Assume g0 is a fixed constant curvature metric and ε > 0 is fixed.
Let µ be a maximizing measure for g0 and ε; that is,
σ1(g0, µ, ε) = σ∗ε . There are independent first eigenfunctions
u1, . . . , un such that the map u = (u1, . . . , un) is a harmonic map
into Rn with the following properties (|u|2)ε = 1 and
∇T (|u|2)ε = 0 for µ-almost all points of ∂M where T is the unit
tangent vector with respect to g0.

Furthermore, if g0 is chosen so that σ∗ε is maximized over g0, then
in addition to the above conditions on the map u, we may assume
that for any h of compact support the function

F (t) =

∫
M
|∇tu|2 dat − σ∗ε

∫
∂M
|u|2 d(µ)t,ε

has a critical point at t = 0 where we have gt = g + th, and the
quantities are computed with respect to gt . Note that (µ)t,ε
denotes the solution of the heat equation with initial data µ for the
canonical metric in the conformal class of gt .
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Bounds on the
√
ε scale

The heat kernel regularization roughly corresponds to averaging
over intervals of length

√
ε, so it is reasonable to expect that on

that scale we have uε close to u, and both are uniformly well
behaved.

Lemma: There is a continuous increasing function ω(ε) with
ω(0) = 0 with the following properties: For any point x in the
support of µ(ε) and for any y ∈ Iω(ε)−1

√
ε(x) we have

|u(x)− u(y)| ≤ ω(ε), |uε(x)− u(x)| ≤ ω(ε), and
||u(x)| − 1| ≤ ω(ε). Furthermore we have |u| ≤ c for all x ∈ ∂M
for a fixed constant c independent of ε.



Weak limits

Now suppose that εi is a sequence tending to 0 with µi being a
corresponding maximizing measure and ui the corresponding
harmonic map. There are two types of weak limits we can take.
First we may assume that µi converges weak* to a measure µ. We
may also assume that ui converges weakly in H1 to a limit u (a
harmonic map to Rn for some n ≥ 1).

Since |ui | is uniformly bounded, for j = 1, . . . , n we may assume
the signed measures uj

i (the jth component of ui ) converge weak*
to a limiting measure which is absolutely continuously with respect
to µ. This limiting measure may be written ûjµ, so we have an
L∞(∂M, µ) map û defined for µ-almost every point of ∂M .
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Conditions satisfied by u

Since ui is harmonic with ∇ηui = σiui on ∂M, we may take the
weak limit to conclude that u is harmonic and satisfies the
boundary condition ∇ηu ds0 = σ∗ûµ in the sense that for any
smooth map ϕ from M to Rn we have∫

M
〈∇u,∇ϕ〉 da0 = σ∗

∫
∂M
〈û, ϕ〉 dµ.

It also follows from the conditions on maximizers for the
regularized problem that u is a conformal map.
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Nontriviality of weak limits

While µ is a probability measure, there is no guarantee that either
u or û is nontrivial. From the equation satisfied for u we see that u
will be nontrivial if û is.

Lemma: There is a positive constant c = c(n) such that |û| ≥ c
for µ almost all points of ∂M.

To prove this we use the properties of the nodal set. Since for
j = 1, . . . , n there are a bounded number of zeros of uj

i on ∂M, we
can choose a subsequence so that these zeros converge, and hence
there are a finite number of intervals I of ∂M whose union is ∂M
so that for i large each of the functions uj

i is nonzero at all points
of a slightly smaller interval J. Now for µi -almost all points of ∂M
we have |ui | arbitrarily close to 1. It follows that the image of J
under ui lies in an octant of Rn arbitrarily close to the unit sphere.
Since the convex hull of this set lies a fixed distance from the
origin, we may conclude that the same is true for the weak limit û.
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Uniform equicontinuity of the angle

The sequence of maps ui is uniformly equicontinuous on the
support of µi , and on any interval I of ∂M for which |ui | is
bounded from below by a positive constant, the sequence ui/|ui | is
uniformly equicontinuous.

• It follows that û is continuous and |û| = 1 on the support of µ.
The support of µ is all of ∂M since u is a nontrivial minimal
immersion and so cannot have vanishing normal derivative on an
open interval of ∂M.

• It also follows that there is a µ-measurable function a with values
in [0, 1] such that u = aû at µ-almost all points of ∂M.

The proof uses the persistence of the nodal set in a crucial way.
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Regularity of the weak limit

The equation satisfied by u (the Laplace equation) implies the
equations in spherical coordinates (ρ, ξ)

∆ξi +
2∑

α=1

n−1∑
j ,k=1

Γi
jk(ξ)

∂ξj

∂xα
∂ξk

∂xα
+

2∑
α=1

∂ξi

∂xα
∂ρ

∂xα
= 0

where Γi
jk are the Christoffel symbols for the standard metric on

Sn−1. The conformality condition on u implies

(
∂ρ

∂z
)2 = −ρ2〈∂ξ

∂z
,
∂ξ

∂z
〉

where the inner product is taken with respect the spherical metric
and z = x1 +

√
−1x2.

We can show from these equations that since ξ is continuous, ξ is
C 1,α up to ∂M. It then follows that u is C 1,α up to ∂M.
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Completion of the proof

Since ∇ηu is parallel to u and u is conformal, it follows that the
tangential derivative ∇Tu is orthogonal to u. Thus we have
∇T |u|2 = 0, and we see that |u| is a positive constant on each
component of ∂M. Thus locally the image of u is a free boundary
surface and the higher regularity follows from standard theory. We
have from the boundary condition that µ is a positive constant
times the smooth measure |∇ηu| ds0, and so µ is a smooth
measure. As observed earlier, this completes the proof because of
the upper-semicontinuity of σ1.


