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Adding Numbers and Shuffling Cards

Let K(i, j) be the chance of a carry j following a carry of i when n numbers are added mod b; 0 ≤ i, j ≤ b− 1.
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Fig 1. Samples of translation invariant point processes in the plane: Poisson (left), determi-

nantal (center) and permanental for K(z,w) = 1
π
ezw− 1

2
(|z|2+|w|2). Determinantal processes

exhibit repulsion, while permanental processes exhibit clumping.

1. Introduction

Determinantal point processes were first studied in 1975 by Macchi [22], who was
motivated by fermions in quantum mechanics. Determinantal processes arise
naturally in several other settings, including eigenvalues of random matrices,
random spanning trees and nonintersecting paths; see, e.g., Burton and Peman-
tle [4], Soshnikov [27], Lyons [20], Lyons and Steif [21], Shirai and Takahashi [25],
Johansson [14], Borodin, Okounkov and Olshanski [3], and Diaconis [8]. A de-
terminantal point process, on a Polish space Λ (assumed locally compact) with
a reference measure (assumed Radon) µ, is determined by a kernel K(x, y): the
joint intensities of the process can be written as det(K(xi, xj)). The kernel de-
fines an integral operator K acting on L2(Λ) that is assumed to be self-adjoint,
non-negative and locally trace class, i.e. for every compact D the eigenvalues,{
λDi
}
, of the operator K restricted to D satisfy

∑
i λ

D
i < ∞. Determinantal

point processes have a special property (Shirai and Takahashi [26] Proposition
2.8) that seems to have only been used in special cases ([1], [23]):

In a determinantal process, the number of points that fall in a compact set
D ⊂ Λ, has the same distribution as a sum of independent Bernoulli(λDi )

random variables.
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Three samples of translation-invariant point processes in the plane.
Determinantal processes exhibit repulsion while permanental processes exhibit clumping.
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