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« Example 1: Find the conditions such that the optimal
a*(s) 1s Increasing 1n s.

max F(a, S) = {P(a)(a —s)+0R(a)}

aels,1]

First order condition:

F =P (a)(a — S)-I— P(a)+ 5R'(a) =0
Suppose the second order condition 1s satisfied, 1.e., F aa< 0
Take the total derivative of F.O.C we have
F da+F, ds=0
da__F, P'(a) o

ds F :P"(a)(a—s)+2P'(a)+5"(a)

aa



F(a, S) = P(a)(a —5)+0R(a)

If F_is increasing in s, i.e. F >0, then a*(s) 1s increasing in s.

Or 1f a and s are complement then more s leads to more a.




max Fla.s)
aelh(s).g(s)]
To guarantee that a™®(s) 1s increasing 1n s, we need

1) F,,>0 11) h(s) and g (s) are increasing in s




Applications:

(a) Consumer theory. Is 1 a normal good in

max{U (x1, x2) : p1x1 + p2xs = m}, or
max{U (x1, (m — p1x1)/p2) : 1 € [0, m/p1]}.
|0, m/p;] is ascending in m
The objective has incr. diffs in (x1, m) if
p2Uz1 (1, 22) — p1Ua2(z1,22) = 0

x(p1, p2, m) is incr. in m or 1 is normal (no quasi-concavity needed!).



(d) Growth theory with Increasing returns:

(Amir-Mirman-Perkins 1991, Amir 1996).
2-period version of the standard Solow-Cass-Koopmans optimal

growth model with increasing returns.
2

maxz u(x; — 1) subjectto x4 = f(y;) and y; € [0, 74).
t=1

where v/ > 0 and v” < 0, and no restrictions on f and 6 € (0, 1).

The two-period value function V5 satisfies

Va(z) = max{u(z — y) + oulf(y)] - y € [0, 2]}

Since the maximand has incr. diffs in (z, y) and the constraint set [0, ]
is ascending, the optimal savings correspondence y*(x) is increasing in
x. (Note that no restrictions are actually needed on f.)

Infinite-horizon: By induction on the horizon length.

Similarly: y*(d, x) is incr. in J.



(e) Monopoly pass-through. I1(p, c) = (p — ¢)D(p) or
log I(p, ¢) = log(p — ¢) + log D(p) , p € [c, 00).
e logII(p,c) has incr. diffs in (p, c) since 0*log(p — c)/dpdc =
(p — )72 > 0. (D need not be \)
e But 9%I(p, ¢)/Opdc = —D'(p) > 0iff D' < 0.
¢ [c, oo) is ascending
e Every selection from p* is incr. in c.
e Let mark-upm £ p — cand II(m, ¢) £ log(m) + log D(m + ¢)

e logII(m,c) has decr. diffs in (m,c) if D is log-concave since
8?log D(m+c)/0mdc = [DD" — D'?]/D* < 0iff DD" — D" < 0.

e m*(c) is decr. in ¢, or p* has all slopes < 1 (as p*(c) = m*(c) + ¢).

e p* has all slopes in [0, 1] and is thus continuous and single-valued.
There is positive but partial pass-through.

e If D is log-convex, log II(m, ¢) has incr. diffs in (m, c), so m*(c) is
incr. in ¢, or p* has all its slopes > 1, so pass-through > 100%.



Lattice Theory

Let X be a partially order set, with the transitive, reflexive,
antisymmetric order relation >.

X 1s a lattice if for every pair of x and y in X, we have

« XV V . theleast upper bound, or join, of x and y,

« XA )Y : the greatest lower bound, or meet, of x and y

exist in X.

Example: the component-wise order in X =R’
(1,2) 2 (0,-3),
but no component-wise order for (1,2) and (3,1)
(1,2) v(3,1)=(3,2), (1,2) A(3,1)=(1,1)
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Cardinal complementarity notions
S is a poset and A Is a lattice.

¢ A — Rissupermodular (spm) if Va, a’ € A,

fla Va)+flaNa)zf(a)+f(a).

» Iffis C2, f spm 2 J°fla)/0a,0a; >0, Vi +

(all nondiagonal elements of the Hessian matrix of fare >0.)

« {4 xS — R has Increasing differences in
(a,s)if Va’>a,s" > s

fla',s) = fla s)=zf(a’s)— f(as),

or if the difference f (a’, -) — f (a, *) 1s increasing.



Spm and Increasing differences
flava)

a=(x’, y)
f@) \ a'=(x, y’)
Yy
f(a):
P —




» Iffis C2, Incr. Diffs 2 Jf(a,s) / Oa; Os; > 0, for all i, j.
(no restrictions on partials 0°f/ da; Oa; or 0 *f/ Os; Os; .)

Special case (common in applications) A = S = R:
spm in (a, s) < Incr. diffs in (a, s)
< 0°f/ 0a 0s > 0.

Both properties can be checked via pairwise relations only.
* Spm and incr. diffs treat relevant variables symmetrically.

Interpretation of spm or incr. diffs

(Edgeworth) complementarity: higher values in any variables
increase the marginal returns to higher values in the remaining
variables.



a*(s)=argmax{F(a,s)ac A}

Theorem 1: Assume

1. F1s supermodular in a for each fixed s,

2. F has increasing differences 1n (s,a), and

3. A =X""ilg(s),h(s)|where h,g.:S — R
are increasing functions with g, <4,

Then the maximal and minimal selections of a™(s) are
increasing functions.

Furthermore, if 2) 1s strict, then every selection of a*(s)
1S Increasing.



Example: Assortative matching
(Becker 1973)

There are n women and n men to match to form n marriages.

Each sex is ranked by productivity {1,2,...,n}.

If 2 and 7 marry, they generate a surplus f(z, 7).

A matching is any list of n (straight) couples.

Question: When is arg max ) | f(7, 7) over all possible matches the
assortative matching, i.e. {(1,1), ..., (n,n)}?

Answer: If f has strictly incr. diffs. |

For otherwise, there would be 2 couples (4, 7) and (7', j') with (say)
i’ > 1 but j' < 7, so that by incr. diffs of f,

e+ 5.0 > F, 0+ 7'},

a contradiction, as (¢’, 7) and (7, j') is better than (7, 7) and (4', 7).



Ordinal Complementarity Condition

 Theorem 2: The conclusions of Theorem 1
holds If supermodularity is replaced by
guasi-supermodularity and (strict)
Increasing differences by the (strict)
single-crossing property



guasi-supermodularity (g-spm) and
single-crossing property (SCP)

e F:A—=Risg-spm,if Va,a €A,

F(a) - F(a /1 a)>(>)0 =
F(a Va') — F@) >(>)0

e F:SxA —>=Rhasthe SCPIn (a;s) If

ya'>a, s >s,

F@,s) — F(a,s)>(>) 0=
F@,s)—-F(a,s)>(>)0.

e The SCP is strict if

F(@',s) - F(a,s) >0 =2F(a’, s’) — F(a, s’) >0.



Economic interpretation of SCP

 [Imited complementarity: If a given
Increase In a Is profitable when s is low,
the same increase will be profitable when
s Is high.

* F may have SCP In (s; a) but notin (a; s) :
one-way complementarity.

e F spm = F g-spm

 F has incr. diffsin (s, a) = F has SCP In (s;
a) and in (a; s).



Properties on spm, g-spm and SCP

F g-spm and g strictly incr=> g ° F' g-spm

F has SCP and g strictly incr=? g ° F has SCP.

If A(:) str. incr. and 4 ° F'1s spm (incr. diffs), then F’1s
q-spm (SCP)

Not all g-spm functionsare =% ° G, with 4 /" and G
spm.

F(-) concave < F(x - y)1s spm in (x, y) < F''<0.
F(x-y)1sspmin (x, y) and g(-) /" and convex =g °
Fspmin (x, y).



Log-supermodularity

F:A —Rislog-spm iff log F is spm or

F(a Va)F(a N a) >F(@)F(a’), Va,a” €A.
F:R? =R, F>0,is log-spm if for (x', y’) > (X, y)
F(X,’ y’)F(X’ y) = F(X’1 y)F(X’ y’) or F(X, Y')

F(X,y)

FOC Y)E(X, y) 2 F(X, y)IF(X, Y)
the relative returns F(x', -)/F(x, -) are /~

(or F(, y)/F(-, y) are /). F(x, y)
(as opposed to absolute returns for spm).

F spm and F log-spm are not comparable.

F spm and F log-spm = F g-spm.

Log-spm survives multiplication, but not addition.

F(X', y)



Spence-Mirrlees condition (SM)
(Milgrom and Shannon 1994)

Theorem: Let F: R°—R be continuously differentiable
and F',(a,b,s) = 0.

F(a,h(a),s) satisties the SCP 1n (a;s) for all
functions #: R — R

If and only If
F,(a,b,s)/| F,(a,b,s)| 1sincreasing in s.

F(a,h(a),s) satisties the strict SCP in (a;s) for all
functions #: R —> R

It F,(ab,s)/| F,(ab,s)| 1isstrictly increasing in
S.



Spm games
A normal-form game (N, A;, F;) is spm if for each 1,
(1) the action set A; is a complete lattice.
(11) F; 1s spm in own action a;,
(or 0°F(a*,a™")/0a’0a, > 0 forall j # k).
(iii) F; has incr. diffs in (a;, a_;)
(or O°F( a, a“i)/aa;(?a,,? > 0 forall j, k.)
(No restrictions on partials of the form 6%F(a’,a™") /da; da;" ")

Theorem 1 (Tarski 1955) Let A be a complete latticeand F' : A — A
be increasing. Then the set E of fixed-points of F' is a nonempty complete
lattice. Furthermore,

E=sup{a:a> F(a)} and E = inf{a:a < F(a)}

Theorem 2 (Zhou 1994) Let A be a complete lattice and F : A — 24
be ascending. Then E is a nonempty complete lattice.

Theorem 3 (Topkis 1979) For a spm game, the best-reply map is as-
cending and the set of PSNE is a nonempty complete lattice.



Comparative Statics of Equilibrium Points

Theorem: Assume that
1. ForeachseS c R, the game 1s smp, and

2. F;has increasing differences in (a,,s) for each
a .

-1.

Then the extremal equilibia of the game are
increasing functions of s.



(c) Search. Diamond’s (1980): agent 7 expands effort a' € [0, 1]
seaching for trading partners, and has a payoff (with s > 0 parameter)
Fi(a',a™") = sa Zaj Cila'.
J#i
Since 0°F;(a',a™")/0a'0a’ = s > 0,V i # j, the game is spm, for any
cost function.

e Since 9°F;/0a'ds > 0, the extremal equilibria are increasing in s
(which is a measure of the ease of search.)

(d) Bertrand oligopoly. F(p',p~*) = (p* — c;)D; (p',p~") or
log F;(p',p™") = log(p' — ¢;) + log Di(p',p™"), 0’ € [ci, 00)
The game is log-spm if log D; is spm in (p', p~*) or (say) V j # 1,
1 1l
It i iy S, 220,
Interpretation: firm ¢’s price elasticity of demand is incr. in rivals’ prices

(very natural, satisfied by most demand functions).

e Since log(p' — ¢;) has incr. diffs in (p’, ), c = (cy, ..., ¢,), for each 4,
extremal equ. prices are " in c.



(e) Cournot duopoly.

Fi(q1,¢2) = 1 P(q1 + q2) — Cilai).
Since with P’ < 0, we have
*Fi(q1,32)/0019q2 = P'(q1+ @) + @1 P"(q1+¢2) < 0 forall g1, go > 0
if and only if
| P'(z) + z2P"(z) < 0forall z > 0,
The game is sbm (Novshek 1985 and Amir 1996). This conclusion is
easily seen to be valid even in the n-firm case, for all n.
For n = 2, if (say) firm 2’s decision is —¢- instead of ¢o, then
O°Fy(q1,q2)/0q10(—q2) > 0,7 = 1,2, so the duopoly is a spm game.
For n > 3, the Cournot game is not spm, but there 1s a PSNE
(Selten 1970, Novshek 1985, Kukushkin 1994).



Parametric Optimization under Uncertainty
( Susan Athey 2002)

TABLE 1
SUMMARY OF RESULTS
A: Hypothesis on B: Hypothesis Corresponding comparative statics
Thm # u(a.e-p) on f(a.e.~p) C: Conclusion conclusion
Lem 4; u(x,8) 2 0 is log- f(8;0) is log- J u(x,8)f(8;0) d(s) is log- arg max,ep / u(x,8)f(8;0) du(s)
Thm 1 spm. spm. spm in (x,0), 7 in6 and B,
Lem 5; (x,s) satisfies f(s;0) is log- f u(x,8)f(s;8) dy(s) arg max,ep / u(x,8)f(s;0) du(s)
Thm 2 8C2 in (x;s). spm. satisfies SC2 in (x;0). 1 in 6 and B,
Lem T, u(x,s) satisfies F(s;0) = 0 is J ulx,8)f(s,0) dp(s) arg max,cp [ u(x8)f(s;0) du(s)
Thm 3 SC2 and the log-spm. satisfies SC2 in (x;8). 7 in6 and B.
returns fo x
are quasi-
concave in s.
Lem 8, u(x,y,s) satisfies f(s;0) is log- [ ulx,y,8)f(s;0) du(s) arg max,ep [ u(xb(x),s)f(s;0) du(s)
Thm 4 M. spm. satisfies SM. tinfandBforallb:R >R,

Inrows 1, 2, and 4: (A) and (B) are a minimal pair of sufficient conditions (Definition 4) for the conclusion (C); further, (C) is equivalent to the comparative statics result in column
4. In row 3, the same relationships hold except that (A) is not necessary for (C) to hold whenever (B) does.

Notation and Definitions. Bold variables are real vectors; italicized variables are real numbers; f is nonnegative; log-spm indicates log-supermodular (Definition 3); sets are
increaging in the strong et order (Definition 1); SC2 indicates single crossing of incremental returns to x (Definition 2); and SM indicates single crossing of ¥ ~ y indifference curves
(Section V), Arrows indicate weak monotonicity,
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