
Meng-Yu Liang

NTU IO (I) : Bertrand Paradox

2 Bertrand Paradox.

In real world usually we use price as strategy rather than quantity. We like Cournot’s result,

but we don’t like its approach.

Bertrand Paradox: 2 firms produce identical goods.

Di(Pi, Pj) =

⎧⎪⎨⎪⎩
D(pi)
1
2D(Pj)

0

if Pi < Pj

if Pi = Pj

if Pi > Pj

Nash Equilibrium: P1 = P2 =MC, that is, the product is selling at zero economic profit. Even

a duopoly would suffice to restore competition.

Bertrand’s result is paradoxical because if the number of firms goes from one to two, the

price decreases from the monopoly price to the competitive price and stays at the same level as

the number of firms increases further. This is not very realistic, as in reality, markets featuring

a small number of firms with market power typically charge a price in excess of marginal cost.

The empirical analysis shows that in the most industries with two competitors, positive profits

are made. Solutions to the Paradox attempt to derive solutions that are more in line with

solutions from the Cournot model of competition, where two firms in a market earn positive

profits that lie somewhere between the perfectly competitive and monopoly levels.

Some reasons the Bertrand paradox does not strictly apply:

(1) Edgeworth solution: capacity constraints and/or increasing MC.

(2) Product Differentiation:

spatial location game; Monopolistic competition; vertical differentiation

(3) Repeated game: Implicit Collusion

2.1 Capacity constraints.

q2 < D(P2)

Rationing Rules:

(1)Efficient Rationing: It is easier for higher value consumers to access the lower price

D̃1(P1, P2) =

{
max[D(P2)− q2 , 0]

D(P1)

if P2 < P1

if P2 ≥ P1

(2)Random Rationing:
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(2) Random Rationing Rule

D̃1(P1, P2) =

{
D(P1)(

D(P2)−q2
D(P2)

)

D(P1)

if P2 < P1

if P2 ≥ P1

some high value people will buy at P1, sales more.

others: ex: queueing and waiting may yield the eager consumers buy at first

Capacity-Constrained Price Game: Kreps & Scheinkman(1983) and Davidson and

Deneckere (1986)

D(P ) = 1− P

-assume c0 ∈ [34 , 1],

T = 1 :given c0, firm i chooses his capacity q̄i with cost c0q̄i

T = 2 :firms choose prices P1, P2 given c1 = 0

(1)- Efficient Rationing Rule:

without loss generality suppose qi <
1
3

∵ πi ≤ P (1− P )− c0qi ≤ 1
4 − c0qi ≤ 0 if qi ≥ 1

3

Lemma 1 T = 2, P ∗ = 1− (q1 + q2)
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Proof: lower price? can not sell more, Hence, revenue↓
Raise price?

Suppose firm 1 chooses P > P ∗

Let q ≡ 1− P − q2 ⇔ P = 1− q2 − q). Thus, we have firm 1’s profit equals

P (1− P − q2) = (1− q2 − q)q ≡ π1(q)

First order condition implies

π′
1(q) = 1− q2 − 2q > 0 ∀q, q2 < 1

3

→ q ↑⇔ P ↓ Q.E.D.

At T = 1,firm 1 maxq̄1≥0 q1(1− q1 − q2 − c0) (like cournot game)

1.No fixed cost.

2.have capacity cost

Firms choose q̄1 = q̄2 =
1−c0
3 , the same equilibrium quantity as in the cournot game.

Implication: The Cournot equilibrium can be viewed as the result of price competition

among firms, as long as they choose the scale of operation before they set prices. However,

this statement is not robust. Under different rationing rule, we can show that the counot

outcome cannot be an equlibrium outcome for this game.

(2)Random Rationing Rule:

T = 2 maxP≥0P · D̃1(P1, P2) = (
q1

q1+q2
)maxP≥0P ·D(P )

Hence, optimal P = PM .

Firms have incentive to raise the price higher than the market clearing price.

because in this model higher price has more chance to sell to the high value consumers

than the efficient rationing rule.

P = PM > P ∗ if q̄1 + q̄2 sufficiently high (c0 < 1
4). Hence, the cournot outcome result of

Kreps & Scheinkman fails.

2.2 Product Differentiation

• Horizontal differentiation refers to differences between brands based on different

product characteristics but not on different overal quality. Example : McDonalds’s

Quarter Pounder v.s. Burger King Whopper; Toyota Camry v.s. Ford Taurus

• Vertical Differentiation refers to differences in the actual quality of two brands.

Example: Lexus v.s. Taurus.

1. Horizontal differentiation (Spatial Competition):

1.1. the linear city: minimal vs maximal product differentiation

Model: Consumers are uniformly distributed along an interval, [0, 1]. A consumer z pays

a mill price (px) + transportation cost (f(x, z)) for purchasing from store x. (Assume each

consumer’s valuation for one unit of product is sufficiently high.)
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1.1.1. When firms’ prices are fixed , we have minimum product differentiation

(Simple Location Game)

Two firms simultaneously choose locations. Prices are fixed at 1. No cost.

Same location results in the equal sharing of the entire market.

* The only N.E.: Each firm will chooses x = 1
2 . There is a Welfare loss.

Three firms simultaneously choose locations. No pure strategy Nash equilibrium exists.

1.1.2. Price Game without locational decisions.

x y
z

px

py

Consumer z’s utility

Uz(x, px) = V − f(x, z)− px

Consumers’ valuation V is sufficiently high

f(x, z): travel cost, an increasing function of the traveling distance |z − x|.
ex. f(x, z) = t(x− z)2 quadratic model or f(x, z) = t|x− z| linear model.

Suppose f (x, z) = t (x− z)2 and there is no production cost. Given (px, py), find demand:

Consumer z purchases goods from x iff px + t(z)2 ≤ py + t(1− z)2

Find ẑ, the marginal consumer’s location:

px + t(z)2 = py + t(1− z)2.

Dx(px, py) = ẑ =
py − px + t

2t

Hence, Dx is increasing in py and decreasing in px.

Dy(px, py) = 1−Dx
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Firm x chooses px to maximize profits: maxpx pxDx(px, py)

max
px

px
py − px + t

2t

Take derivative with respect to px and then set it equal to 0.

py
2t

− px
t

+
1

2
= 0

px =
1

2
(py + t) (1)

Firm y chooses py to maximize profits: maxpy pyDy(px, py)

Similarly, we have

py =
1

2
(px + t) (2)

From (1) and (2), we can solve px = py = t. Hence, π∗
x = π∗

y = 1
2t

1.1.3. First, firms choose location (a, b). After observe (a, b), firms choose prices (p1, p2)

simultaneously.

(Maximal product differentiations)

a b

0 1︸ ︷︷ ︸ ︸ ︷︷ ︸p1
p2

Marginal consumer ẑ :

p1 + t(z − a)2 = p2 + t(1− b− z)2

D1(p1, p2) = ẑ = p2−p1
2(1−a−b)t +

1−b+a
2 increasing in a

Given a,b:

π1(p1, p2) = p1D1(p1, p2)

Solve F.O.C.

p∗1(a, b) = t(1− a− b)(1 + a−b
3 )

p∗2(a, b) = t(1− a− b)(1 + b−a
3 )

D1

(
p∗1,p∗2

)
= 1

2 − 1
6 (b− a)
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We can show that ∂π1
∂a < 0. Hence, a∗ = 0, b∗ = 0. We have Maximal product

differentiation.

Social Optimal Location: Minimize total travel cost: a = 1
4 , b =

1
4

Total travel cost in Competition is bigger. Social welfare loss.

Note that for linear travel cost f (x, z) = t |x− z|, the profit function π1 (p1, p2) is dis-

coutinuous in p1 and the pure strategy Nash equilibrium does not exist.

p2

0
1

�

�π1

p1

(A) Take the entire market (B) Share Market (normal case) (C) No market share

(A) (C)

(A)

(B)

(C)

(B)

p2

p1
�

�

the best response functions

BR2

BR1

1.2 Circular Model (Salop 1979)

T=1: entry decision n firms enter.

T=2: pricing decision

Assume linear travel cost t|x− z|, and fixed entry cost f > 0

Suppose all other firms set price = p

p0 + tz = p+ t( 1n − z)

z =
p−p0+

t
n

2t
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D0(p0, p) = 2z, π0 = 2p0
p−p0+

t
n

2t

p∗ = t
n and π∗ = t

n2

Free entry implies zero profits, t
n2 = f . Hence, nc =

√
t
f

What is social optimal number of firms

min
n

nf + 2n

∫ 1
2n

0
txdx

ns = 1
2

√
t
f = 1

2n
c

Too many firms in the market

Social optimal : balance fixed cost and transportation cost

competition: business stealing incentive

2. Vertical Product Differentiation (Maximal quality differentiation)

Demand:

U =

{
θs− p if buy at p with quality s

0 if not buy

MC = 0

w.l.o.g s2 > s1

θ ∈ [θ, θ] where θ = 1 + θ > 1

Assumptions:

1. θ ≥ 2θ 2 firms can survive.

2. θ−2θ
3 (s2 − s1) ≤ θs1 market is covered

�

�

U1

U2

θ

θs1 − p1

θs2 − p2

θ̂
θ θ

θ̂s1 − p1 = θ̂s2 − p2
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θ̂ = p2−p1
Δs , where Δs = s2 − s1.

Hence, D1(p1, p2) = θ̂ − θ and D2 = θ − θ̂.

Each firm chooses price to maximize profit: maxpi piDi(p1, p2)

F.O.C. ⇒ Best response function: p1(p2) = (p2 −Δ)/2, where Δ = θΔs.

p2(p1) = (p1 +Δ)/2, where Δ = θΔs.

p∗1 =
θ−2θ
3 Δs

p∗2 =
2θ−θ
3 Δs > p∗1

π∗
1 = (θ−2θ)2Δs

9

π∗
2 = (2θ−θ)2Δs

9 > π∗
1

Δs ↑⇒ π1, π2 ↑
Hence, we have Maximal quality differentiation.

3. The Multinomial Logit : (See Discrete Choice Theory of Product Differentiation by

Anderson, de Palma and Thisse) The probability that a consumer choosing a from S is

PS (a) =
expU (a)∑
b∈S expU (b)

The first justification :

The choice axiom proposed by Luce is a relation between choice probabilities defined on

different subsets of A. For any S ⊂ A and T ⊂ A such that S ⊂ T , and

1. if, for given a ∈ S, P (a, b) 
= 0, 1 for all b ∈ T , then

PT (a) = PT (S) · PS (a)

2. if P (a, b) = 0 for some a, b ∈ T , then for all S ⊂ T

PT (S) = PT−{a}(S − {a}).

Part 1 is a path independence property. Part 2 means that if a ∈ T is never chosen in a

pairwise comparison with some other b ∈ T , then a can be deleted from T .

Theorem (Luce, 1959) Assume that P (a, b) 
= 0, 1 for all a, b ∈ A. Part 1 of the choice

axiom is satisfied if and only if there exists a positive real-valued function u defined on A such

that

Ps (a) =
u (a)∑
b∈S u (b)

Let U (a) = lnu (a), then we have the multinomial logit model.

The second justification :
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Consider a population of individuals facing the same choice set A. What is the fraction

of the population choosing a given alternative ? The utility from purchasing good i ∈ A is

Ui = ui + ei, where ui is observable and ei is not. Hence, Ũi = ui + εi, where εi takes into

account the idiosyncratic taste differences of consumers. Suppose there are two stores and let

ε = ε1 − ε2. If the distribution function for ε is given by 1
1+exp(−(x/μ)) then the probability of

choosing 1 is

PA (1) =
exp(u1/μ)

exp (u1/μ) + exp (u2/μ)

2.3 Dynamic Model of Oligopoly

Fluctuating Demand D (P, ε), ε ∼i.i.d.

• Green and Poter (1984 Econometrica):

– ε unobservable, incomplete information (Bayesian EQ),

– “Price war” during recession.

– Punishment phase P = c < PM

– prevent secret price cuts, switch to punishment phase once for a while

• Rotemberg and Saloner (1986 AER):

– ε observale, complete information (Subgame perfect),

– “Price war” during boom.

– cooperation phase PM > P > c

– lower the benifit from deviation in boom, punishment phase never happen in EQ

path

Green and Poter (1984 Econometrica)

Cournot game

Cannot see quantity→price signal

but. some noise in demand side. demand shock.

→price information can not tell how much the other firm produce. (deviate or not)

Public signal is an imperfect signal.

N firms

q ∈ [0, q]N

P : price(public signal)

ri(qi, P ):realized payoff in the stage game
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ht ∈ (P 0, ..., P t−1)

gi(q) = EP {ri(qi, P )} =
∫
ri(qi, P ) dF (P � qi)

where F (P � q) = Pr ob{P̃ ≤ P � q}
ex:P = h(Q) + ε. or P = θh(Q) ε, θ ∼ iid

satisfies MLRP (Monotone Likelihood Ratio Property, i.e., f(P |q)
f(P |q′) is increasing in P for

q > q′)
Let q∗(symmetric) be the stage game Nash quantity vector

limN→∞ gi(q
∗) → 0

Trigger Price Strategy

Specifies q̂ , P̂ , T̂

Two phases

{
cooperate

punish

Play q̂

Play q∗

Firms play cooperate phase as long as P ≥ P̂ and switch to punish phase for T̂ periods if

P < P̂

Let λ(q) = 1− F (P̂ | q) be the probability of P ≥ P̂ . Thus λ is decreasing in q.

conform π̂ : present discounted value of profit at t in the collusive phase

π̂ = g(q̂) + δλ(q̂)π̂ + δ[1 − λ(q̂)]δ
bT π̂

⇒π̂ = g(bq)

[1−δλ(bq)−δ bT+1(1−λ(bq))]
< g(bq)

1−δ

For λ = 1 or T̂ = 0 we have π̂ = g(bq)
1−δ

max
bP , bT bq

π̂

s.t. g(q̂) + δλ(q̂)π̂ + δ[1 − λ(q̂)]δ
bT π̂

≥ g(qi, q̂−i) + δλ(qi, q̂−i)π̂ + δ[1 − λ(qi, q̂−i)]δ
bT π̂

∀qi
[g(qi, q̂−i)− g(q̂)] one period gain from increasing production

≤ δ[1−δ
bT ][λ(bq)−λ(qi,bq−i)]g(bq)

1−δλ(bq)−δ bT+1(1−λ(bq))

qi ↑ then Prob. remaining in coorperation ↓
Two ways to set : T̂ ↑, P̂ ↓ or T̂ ↓, P̂ ↑
(See Tirole textbook section 6.7 and ex 6.8, ex 6.9)

Rotemberg & Saloner(1986 AER)

- Main Result: Colluding Oligopolists behave more competitively when demand is high.

N: identical Firm

Homogeneous (Perishable) good.
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MC=AC=c

Market Inverse Demand P (Qt, εt)

Qt =
∑N

j=1 qjt

εt ∈ [ε, ε]˜F (.) observed before qjt is set, εt iid

P (Q, ε0) ≥ P (Q, ε1) ∀ε0̇ > ε1∀Q
π(Q, εt) ≡ [P (Q, εt)− c]QN
maximized at πm(Qt, εt) = πm(εt)

π(Q, εt) ↑ in εt ∀Q
⇒ πm(εt) ↑ in εt

Suppose strategic variable is price.

Single Period Result P ∗
1 = c, i = 1, ......, N

Infinite Horizon-Implicit Collusion.

K≡ punishment cost

πm(εt) sustainable

⇔ Nπm(εt)− k ≤ πm(εt)

(Pj < P c) (Pj = P c)
(3)

Note: π (cheating) grows more quickly in εt

(1) Nπm(εt)− k ≤ πm(εt)

(2) ε∗t = ε s.t. εt > ε∗t ⇒ (1) fails

(3) πc(εt, ε
∗
t ) =

{
πm(εt), εt ≤ ε∗t

πm(ε∗t ) =
k

N−1 , εt > ε∗t
at ε∗t (1) holds
use Pi = c as subgame punishment strategy

�

�

π(Q, ε′)

ε′′ > ε∗ > ε′

k
N−1

Q1Q2

π(Q, ε′′)

π(Q, ε∗)

πm(ε′′)

πm(ε′)

Qm(ε∗)

k(εt, ε
∗
t ) = E{∑∞

j=1 δ
jπc(εt+j , ε

∗
t ) | εt}

(4) k(ε∗t ) =
δ

1−δ [
∫ ε∗
ε πm(ε) dF (ε) + (1− F (ε∗)πm(ε∗)]
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εt ∈ [ε, ε]˜iid

k � ε∗t
seek largest ε∗ s.t (1)˜(4) hold.

(5) g(ε′) ≡ πm(ε
′
)− k(ε

′
)

N−1

g(ε∗) = 0 ⇒(1)˜(4) hold.

g(ε) = πm(ε)[1 − δ
(1−δ)(N−1) ] < 0 ⇔ N < 1

1−δ (6a)

g(ε) = πm(ε)− δ
(1−δ)(N−1) ]

∫ ε
ε πm(ε) dF (ε) > 0 ⇔ πm(ε)

E(πm(ε)) >
δ

(1−δ)(N−1) (6b)

g(ε) < 0, g(ε) > 0, g(ε′) continuous.
=⇒exist an interior ε∗ satisfying (1)-(4)

Intuition: bc εt is iid. penalty to cheating is constant. but the gain from cheating ↑ in εt.

Cartel picks Q1 over Q2 because Q1 ⇒lower gain from cheating.

εt > ε∗ ⇒ Qc(εt)[P (Qc(εt), εt)− c] constant.

Then Qc
T ↑ in εT ⇒ P ↓ in εt ,εt > ε∗

Firms approach competitive behavior when demand is high.
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