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1 Double Auction (Chatterjee and Samuelson 1983)

Bayesian Nash equilibria:

Game structure:

N : set of players

Si : action space for i

Θi : set of types for i.

F : probability measure on Θ =
∏
i∈N Θi, θ ∈ Θ. “Prior”

πi (si, s−i, θi, θ−i) payoff function

strategies: si : Θi → Si

Definition 1 s∗i (θi) , i ∈ N, is a BNE if for ∀θi,∀i ∈ N

s∗i (θi) ∈ arg max
si∈Si

∫
πi (si, s−i (θ−i) , θi, θ−i)F (θ−i|θi) dθ−i

N = 2

b : buyer

s : seller

v : buyer’s willingness to pay.

c : seller’s cost, (contiuous types)

v, c˜ [0, 1] uniformly

pb and ps are buyer’s and seller’s bids, respectively.

πb(pb, ps, v, c) =

{
v − pb+ps

2

0

if pb ≥ ps
o.w.

πs(pb, ps, v, c) =

{
pb+ps

2 − c
0

if pb ≥ ps
o.w.

Note : If v, c are public information (no private information) then this is a Nash demand

Game. Any pb = ps = p ∈ [c, v] is a N.E. and effi ciency is attainable. However, if we have

asymetric information, is effi ciency attainable?

If a pure strategy (pb (v) , ps (c)) is BNE then
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pb (v) solves

max
pb

[
v − pb + E (ps (c) |ps (c) ≤ pb)

2

]
prob (ps(c) ≤ pb)

ps (c) solves

max
ps

[
ps + E (pb (v) |pb (v) ≥ ps)

2
− c
]
prob(pb (v) ≥ ps)

Case 1: consider the following strategies

pb (v) =

{
x if v ≥ x
0 o.w.

and ps (c) =

{
x if c ≤ x
1 o.w.

is a BNE.

Case 2: assume using linear strategies:{
pb (v) = αb + βbv

ps (c) = αs + βsc
(1)

where βs, βb > 0

i.e.pb ~unif [αb, αb + βb] and ps ~unif [αs, αs + βs].

By the definition of BNE, we have (p∗b , p
∗
s) solves{

maxpb
(
v − 1

2

(
pb + αs+pb

2

)) pb−αs
βs

maxps

(
1
2

(
ps + ps+αb+βb

2

)
− c
)
αb+βb−ps

βb

F.O.C.

{
pb = 2

3v + 1
3αs

ps = 2
3c+ 1

3 (αb + βb)

Comparing with (1), we have βb = 2
3 ,βs = 2

3 , αb = 1
12 , αs = 1

4{
pb = 1

12 + 2
3v ∈ [ 1

12 ,
9
12 ]

ps = 1
4 + 2

3c ∈ [1
4 ,

11
12 ]

Note:

• At c = 1, ps = 11
12 < c: The seller bids less than his own cost. Hence, the probability

of trade at c = 1 should be 0.

• At v = 0, pb = 1
12 > v: The buyer bids more than her own valuation. Hence, the

probability of trade at v = 0 should be 0.

Trade only happens when 1
12 + 2

3v ≥
1
4 + 2

3c, i.e., v > c+ 1
4 .

Therefore effi cient trade does not occur.

Q: Could we find a mechanism let trade occur for all v > c? No Way.

In fact : the second mechanism is the best mechanism in double auction game.

2



2 Mechanism Design I

Suppose that there are I + 1 players:

• a principal (player 0) with no private information

• I agents (i = 1, . . . , I) with types θ = (θ1, . . . , θI) in some set Θ.

Step 1: the principal designs a “mechanism,”or “contract,”or “incentive scheme.”

Step 2: the agents simultaneously accept or reject the mechanism.

Step 3: the agents who accept the mechanism play the game specified by the mechanism.

(send message m (θ) ∈M)
Principal chooses an allocation y (m) = {x (m) , t (m)}.

• a decision x ∈ X, where X is a compact, convex and nonempty set

• a transfer t = (t1, . . . , tI) from the principal to each agent

Player i (i = 0, . . . , I) has a von Neumann-Morgenstern utility ui (y, θ). ui (i = 1, . . . , I)

is increasing in ti. u0 is decreasing in each ti. These functions are twice continuously

differentiable.

• Agents: Ui (θi) = Eθ−i [ui (y (θi, θ−i) , θi, θ−i) |θi]

• Principal: Eθu0 (y∗ (θ) , θ)

Revelation Principle: The principal can content herself with “direct”mechanism, in which

the message spaces are the type spaces, all agents accept the mechanism in step 2 regardless

of their types, and the agents simultaneously and truthfully announce their types in step 3.

( Gibbard (1973), Green and Laffont (1977), Dasgupta et al (1979) and Myerson (1979) ).

Therefore we consider y (θ) instead of y (m).

Goal: Find y∗ (θ) such that y∗ solves the principal’s maximization problem

max
y
Eθu0 (y (θ) , θ)

subject to

• IC constraints (Truth telling: Each agent’s optimal choice is to report his own type θi)

Ui (y (θi, θ−i) , θ) ≥ Ui
(
y
(
θ̂i, θ−i

)
, θ
)
for

(
θi, θ̂i

)
∈ [θ, θ̄]× [θ, θ̄], and i = 1, . . . , I

• IR constraints (participation constraint)

Ui (y (θi, θ−i) , θ) ≥ ui for all θi, i = 1, . . . , I.
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Examples of Mechanism Design:

Seller-buyer example: Myerson and Satterthwaite (JET, 1983):
Suppose that the seller’s cost and the buyer’s valuation have differentiable, strictly positive

densities on [c, c̄] and [v, v̄], that there is a positive probability of gains from trade (c < v̄),

and that there is a positive probability of no gains from trade (c̄ > v). Then there is no effi -

cient trading outcome that satisfies individual rationality, incentive compatibility and budget

balance.

Model: The seller can supply one unit of a good at cost c drawn from distribution F1 (·)
with differentiable, strictly positive density f1 (·) on [c, c̄]. The buyer has unit demand and

valuation v drawn from distribution F2 (·) on [v, v̄] with differentiable, strictly positive density

f2 (·).
Principal: the social planner

agents: I = 2, seller and buyer

x (c, v) ∈ [0, 1] the probability of trade

t (c, v) the transfer from buyer to the seller (so t1 ≡ t and t2 ≡ −t)
To find the optimal mechanism y = {x (c, v) , t (c, v)}, let us define the followings:
X1 (c) ≡ Ev [x (c, v)]

X2 (v) ≡ Ec [x (c, v)]

T1 (c) ≡ Ev [t (c, v)]

T2 (v) ≡ −Ec [t (c, v)]

U1 (c) ≡ T1 (c)− cX1 (c)

U2 (v) ≡ vX2 (v) + T2 (v)

Note that the IC condition requires that c ∈ arg maxc′ T1 (c′)− cX1 (c′). Hence, envelope

theorem implies that

dU1 (c)

dc
= −X1 (c)

Therefoer, IC condition can be rewritten as

U1 (c) = U1 (c̄) +

∫ c̄

c
X1 (γ)dγ

U2 (v) = U2 (v) +

∫ v

v
X2 (ν) dν

Substituting for U1 (c) and U2 (v) and adding up the above two equations yields

T1 (c) + T2 (v) = cX1 (c)− vX2 (v) + U1 (c̄) + U2 (v) +

∫ c̄

c
X1 (γ)dγ +

∫ v

v
X2 (ν)dν

But budget balance (t1 (c, v) + t2 (c, v) = 0) implies that

EcT1 (c) + EvT2 (v) = 0
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Therefore

0 =

∫ c̄

c

(
cX1 (c) +

∫ c̄

c
X1 (γ) dγ

)
f1 (c) dc+ U1 (c̄)

+

∫ v̄

v

(∫ v

v
X2 (γ) dγ − vX2 (v)

)
f2 (v) dv + U2 (v)

U1 (c̄) + U2 (v) = −
∫ c̄

c

(
c+

F1 (c)

f1 (c)

)
X1 (c) f1 (c)dc

+

∫ v̄

v

(
v − 1− F2 (c)

f2 (v)

)
X2 (v) f2 (v) dv

U1 (c̄) + U2 (v)

=

∫ c̄

c

(∫ v̄

v

(
v − 1− F2 (v)

f2 (v)

)
−
(
c+

F1 (c)

f1 (c)

))
x (c, v) f1 (c) f2 (v) dcdv (2)

Consider the example in note 1: v, c are uniformly distributed on [0, 1]. Then (1) becomes

0 ≤
∫ 1

0

∫ 1

0
(2v − 1− 2c)x (c, v) dcdv

= 2

∫ 1

0

∫ 1

0

(
v − c− 1

2

)
x (c, v) dcdv

∫ 1
0

∫ 1
0 (v − c)x (c, v) dcdv∫ 1
0

∫ 1
0 x (c, v)dcdv

≥ 1

2

Hence, conditional on the individuals reaching an agreement to trade, the expected difference

in their valuations must be at least 1
2 .

Note: the linear strategies in the double auction imply that x (c, v) = 1 iff v − c ≥ 1
4 and

x (c, v) = 0 otherwise. Hence, the density on the trading area is 1
2 ·

3
4 ·

3
4 = 9

32 . Conditional on

the individuals reaching an agreement to trade, the expected difference in their valuations is∫ 1
1
4

∫ v− 1
4

0
32
9 (v − c)dcdv = 1

2 which satisfying the requirement. In fact, this is the second-best

mechanism.

However, the ex post effi ciency requires that conditional on the buyer’s valuation being

higher than the seller’s, the expected differences v − c would be only∫ 1

0

∫ v

0
2 (v − c) dcdv =

1

3

Hence, the smallest lump-sum subsidy required from an outside party to create a Bayesian

incentive-compatible mechanism which is both ex post effi cient and individually rational is
1
2 −

1
3 = 1

6 .
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