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Groves Mechanism and AGV Mechansim

• I + 1 players.

—Types are drawn from independent distribution Pi on [θi, θ̄i] with strictly positive and

differentiable densities pi. The distributions are common knowledge.

— (private values) Agent i’s preferences: ui (x, ti, θi)

—Preferences are quasi-linear: For any i ∈ {1, . . . , I},

ui (x, ti, θi) = Vi (x, θi) + ti,

and either

u0 (x, t, θ) = V0 (x, θ)−
I∑
i=1

ti

(selft-interested principal) or

u0 (x, t, θ) =

I∑
i=0

V (x, θ)

(benevolent principal), where V0 (x, θ) = B0 (x, θ) − C0 (x), C0 (x) is the principal’s

monetary cost from decision x and B0 (x, θ) is nonmonetary benefit.

• An allocation y (·) is (ex post) effi cient if x (θ) ∈ K for each θ and

x (θ) maximizes
I∑
i=0

Vi (x, θ) over K, for all θ

• Budget Balance:
I∑
i=1

ti (θ) ≤ −C0 (x (θ)) for all θ

• Dominant Strategy vs. Bayesian Mechanisms: Choose agent i’s transfer so that agent i’s
payoff is the same as the total surplus of all parties up to a constant.

—Dominant-strategy mechanism: Each agent’s optimal announcement is independent of

the announcements of the other agents, i.e., IC is for each agent i = 1, . . . , I and for each

θi, θ̂i and θ−i,

ui (y (θi, θ−i) , θi) ≥ ui
(
y
(
θ̂i, θ−i

)
, θi

)
.

—Bayesian mechanism: IC is

Eθ−iui (y (θi, θ−i) , θi) ≥ Eθ−iui
(
y
(
θ̂i, θ−i

)
, θi

)
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—Dominant strategy mechanism is not sensitive to beliefs that players have about each

other and it does not require players to compute Bayesian equilibrium strategies. How-

ever, focusing on dominant-strategy mechanism restricts the set of mechansims consider-

ably. Thus, implementation in dominant strategies is a nice property to have if feasible,

but it is not clear how much utility loss a principal should be willing to tolerate in order

to have dominant strategies for the agents.

—Mookherjee and Reichelstein (1989) identify a class of models in which dominant strategy
implementation involves no welfare loss relative to Bayesian implementation.

• Effi ciency Theorems

—The Groves Mechanism (1973) Dominant Strategy implementation: Choose agent i’s

transfer so that agent i’s payoff is the same as the total surplus of all parties up to a

constant.

∗ Let x∗ (θ) maximizing
∑I
i=0 Vi (x, θi) denote an effi cient solution for the type profile

θ.

∗ Define ti
(
θ̂
)
≡
∑
j∈{0,...,I}

j 6=i
Vj

(
x∗
(
θ̂i, θ̂−i

)
, θ̂j

)
+ τ i

(
θ̂−i

)
, where τ i

(
θ̂−i

)
is an

arbitrary function of θ̂−i.

∗ Show that it is optimal for agent i to announce his true type
(
θ̂i = θ

)
regardless of

the other agents’announcements. This implies that
(
x∗
(
θ̂
)
, t
(
θ̂
))

is a dominant

strategy mechanism which yields effi cient allocation. The proof is simple: Suppose

that agent i strictly prefers announcing θ̂i to announcing θi for some types θ̂−i of

the other agents. Then

Vi

(
x∗
(
θ̂i, θ̂−i

)
, θi

)
+
∑
j 6=i

Vj

(
x∗
(
θ̂i, θ̂−i

)
, θ̂j

)
> Vi

(
x∗
(
θi, θ̂−i

)
, θi

)
+
∑
j 6=i

Vj

(
x∗
(
θi, θ̂−i

)
, θ̂j

)
.

But this contradicts the fact that x∗
(
θi, θ̂−i

)
is effi cient for type profile

(
θi, θ̂−i

)
.

∗ Budget balance may not be satisfied.
∗ Example: Should a bridge be built? ui = θix+ ti, where x is equal to 0 or 1 and θi
is agent i’s valuation or willingness to pay for the public good. With c > 0 denoting

the cost of supplying the public good, the effi cient rule is

x∗ (θ) =

{
1 if

∑I
i=1 θi ≥ c

0 otherwise

One Groves mechanism for this example takes the following form:

ti

(
θ̂
)

=

{ ∑I
j 6=i θ̂j − c if

∑I
j=1 θ̂j ≥ c

0 otherwise

and

x∗
(
θ̂
)

=

{
1 if

∑I
i=1 θ̂i ≥ c

0 otherwise
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—The AGV Mechanism: Instead of being paid the surpluses of the other agents on the

basis of their reports, each agent is paid the expected value of the other agents’surpluses

conditional on his own report.

ti

(
θ̂
)
≡ Eθ−i

 ∑
j∈{0,...,I}

j 6=i

Vj

(
x∗
(
θ̂i, θ−i

)
, θj

)+ τ i

(
θ̂−i

)

The function τ i (·) will be determined later to ensure BB.

∗ (x∗, t) is (Bayesian) incentive compatiable: θ̂i = θi must maximize

Eθ−i

Vi (x∗ (θ̂i, θ−i) , θi)+
∑
j 6=i

Vj

(
x∗
(
θ̂i, θ−i

)
, θj

) .

But θ̂i = θi maximizes the term inside the expectation operator for all θ−i and,

therefore, maximizes the expectation.

∗ Suppose cost C0 (x) = 0. BB requires
∑I
i=1 ti

(
θ̂
)

= 0. Let

Ei
(
θ̂i

)
≡ Eθ−i

∑
j 6=i

Vj

(
x∗
(
θ̂i, θ−i

)
, θj

)
denote the “expected externality”for agent i when he announces θ̂i. Since Ei

(
θ̂i

)
is the first part of the transfer to agent i and τ i (·) is supposed not to depend on θ̂i,
Ei
(
θ̂i

)
must be paid be other agents, i.e.,

τ i

(
θ̂−i

)
= −

∑
j 6=i

Ej
(
θ̂j

)
I − 1

= − 1

I − 1

∑
j 6=i

Eθ−j

∑
k 6=j

Vk

(
x∗
(
θ̂j , θ−j

)
, θk

) .

∗ For C0 (x) > 0. BB requires
∑I
i=1 ti

(
θ̂
)
≤ −C0

(
x
(
θ̂
))

. Consider the “fictional

problem”where the agents’utility functions are

Ṽi (x, θi) ≡ Vi (x, θi)−
C0 (x)

I

and the principal’s cost is C̃0 (x) ≡ 0. We then compute the transfers t̃i (·) for this
fictional problem, and set ti (·) = t̃ (·)− C0

(
x∗
(
θ̂
))

/I.

∗ Ex post IR may not be satisfied. Need agents to sign a contract before they learn
their types privately.

Exercise: A seller has a single indivisible unit of a good that he wants to sell to one of N buyers.

The seller values the good at zero. The buyer i’s utility is described as: ui (xi, ti, θi) = θixi + ti,

where θi is a random variable uniformly distributed over [0, 1] , xi denotes the probability that buyer

i obtains the good, and ti denotes buyer i’s transfer. The seller’s utility is u0 = 0 · x0 + t0 = t0.

Any feasible vector x must satisfy : xi ≥ 0 for all i = 0, · · · , N, and
∑N
i=0 xi = 1.
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1. Characterize a Pareto-effi cient allocation x∗ (θ) . (Hint: You may find it useful to define

z−i (θ−i) ≡ maxj 6=i {θj} and work with it.)

2. Design a Groves mechanism that implements x∗ (θ) .

3. Now, impose the IR constraints, ui ≥ 0, and “BB”constraint,
∑N
i=0 ti ≤ 0. Find the Groves

mechanism implementing x∗ (θ) that yields the highest t0 (θ) .

4. Find the Bayesian Nash equilibrium for the second-price auction game. (i.e. the highest

bidder gets the object and pays the second highest bidding price.)

5. Give an economically meaningful explanation of the relationship between (3) and (4).

1) Find the first best decision x∗ (θ)

x∗ (θ) ∈ arg max ΣNi=0vi (xi, θi) s.t. ΣNi=0xi = 1

= arg max ΣNi=0θixi s.t. ΣNi=0xi = 1

ΣNi=0θixi is maximized when all the x goes to the individual with largest value of θ.

Hence,

x∗i (θ) =

{
1

0

if θi ≥ zi(θ̂−i)
o.w.

for i = 0, 1, . . . , n

2). Groves Mechanism: By definition ti = Σj 6=ivj

(
x∗
(
θ̂i, θ̂−i

)
, θ̂j

)
+ τ i

(
θ̂−i

)
and

x∗i

(
θ̂
)

=

{
1

0

if θi ≥ zi(θ̂−i)
o.w.

∀i, we have payoff to i when reporting θ̂i

x∗i

(
θ̂
)
θi + ti

(
θ̂
)

=

 θi + Σj 6=ivj

(
x∗
(
θ̂i, θ̂−i

)
, θ̂j

)
+ τ i

(
θ̂−i

)
Σj 6=ivj

(
x∗
(
θ̂i, θ̂−i

)
, θ̂j

)
+ τ i

(
θ̂−i

) if θ̂i ≥ zi(θ̂−i)
o.w.

=

 θi + τ i

(
θ̂−i

)
zi(θ̂−i) + τ i

(
θ̂−i

) if θ̂i ≥ zi(θ̂−i)
o.w.

An agent would only prefer θ̂i ≥ zi(θ̂−i) if θi ≥ zi(θ̂−i).
An agent would only prefer θ̂i < zi(θ̂−i) if θi < zi(θ̂−i).

Hence, it is the best interest of the agent to set θi = θ̂i. All agents tell the truth.

3) Seller : maxt(θ) t0 (θ) s.t. ΣNi=0ti (θ) = 0 and ui (xi, ti, θi) ≥ 0.

Without loss of generality, suppose θ1 < θ2 < ... < θN .

Seller’s maximization problem becomes:

max
τ i(θ−i)

−(ΣN−1i=1 zi (θ−i) + τ i (θ−i))− τN (θ−N )

s.t.zi(θ−i) + τ i (θ−i) ≥ 0 for i = 1, ..., N − 1

θN + τN (θ−N ) ≥ 0
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In order to maximize this expression, make the IR constrains for the low valuation types bind.

This implies τ i (θ−i) = −zi (θ−i) ∀i = 1, ..., N − 1.

Hence, the question becomes

max
τ i(θ−i)

−τN (θ−N )

s.t. θN + τN (θ−N ) ≥ 0

Since τN (θ−N ) can not depend on θN , the minimum τN (θ−N ) to satisfy IR for all possible θ

is −zN (θ−N ) .

Hence, t0(θ) = −τN (θ−N ) = zN (θ−N ) = θN−1 and τ i (θ−i) = −zi (θ−i) ∀i = 1, ..., N.

5) Under the mechanism in (3), all agents bid their valuation. The agent with the highest

valuation receives the good and pays a transfer payment equals to the 2nd highest bid. All

other agents pay nothing. This is exactly a second price auction. This shows that the second

price auction is the most profitable Groves mechanism for the seller which satisfies the IR and BB

constraints. With uncertainty, the seller has to pay information rent θN − θN−1 for the buyer with
the highest valuation for telling the truth. Hence, the seller can only receive the highest virtual

surplus θN − (θN − θN−1) = θN−1.

5


