The Meteoritic Record: Tracing Early Solar System Evolution

Pascale Ehrenfreund & Mark Sephton Leiden Institute of Chemistry Imperial College London

Meteorite analysis

Asteroid fragments - "meteorites" are the only extraterrestrial material that can be investigated in the laboratory in substantial quantities

The analyses of meteorites provide evidence that both volatile and refractory material has been substantially altered owing to thermal and aqueous processes within the solar system

Chemical characterization and stable isotope measurements on individual molecules are revealing reaction mechanisms that preceded and coincided with the birth of the solar system

Solar nebula carbon chemistry

Infalling interstellar material experiences chemical alteration to varying degrees, depending upon the epoch and position of entry into the nebula

<i>Ionization source</i> : stellar X-rays, stellar UV, interstellar UV,				
	cosmic rays			
Heating:	viscous dissipation, stellar radiation			
Transport:	radial mixing, diffusion			

Inner solar nebula: material is heavily processed, strong radiation, high temperature, dissociation of molecules

Outer solar nebula: evaporation-recondensation of ices, similar chemistry as in dense clouds

Solar System Inventory

Some relative pristine material with a strong interstellar heritage

Highly processed interstellar material that was exposed to high temperatures and radiation

Material newly formed in the solar nebula or on solid solar system objects

Minerals in meteorites

Chondrites

- Mineral components
- chondrules
- clays
- carbonates
- Multiple proposed origins
- circumstellar carbonates
- solar nebula chondrules clays
- parent body carbonates clays

Lithium in meteorites

<u>Lithium</u>

- Two isotopes - ⁶Li, ⁷Li
- Action of water

- ⁷Li passes preferentially into solution

- Reveals origins of minerals
- chondrules (anhydrous)
 ⁷Li-poor
 - solar nebula
- clays
 - ⁷Li-intermediate some water on parent body
- carbonates

⁷Li-rich lots of water on parent body

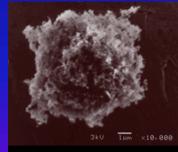
LITHIUM ISOTOPIC COMPOSITIONS OF BULK MURCHISON AND SOME OF ITS CONSTITUENT PARTS

Sample	²Li∕6Li	$\delta^7 Li^a$
Whole rock	12.0654	$+3.78 \pm 0.21$
Carbonate-rich acetic acid-soluble phaseb	12.1708	$+12.55 \pm 0.17$
	12.1766	$+13.03 \pm 0.25$
Phyllosilicate-rich matrix ^e	12.0940	$+6.16 \pm 0.78$
	12.0901	$+5.83 \pm 0.61$
Chondrule	11.9969	-1.92 ± 0.31

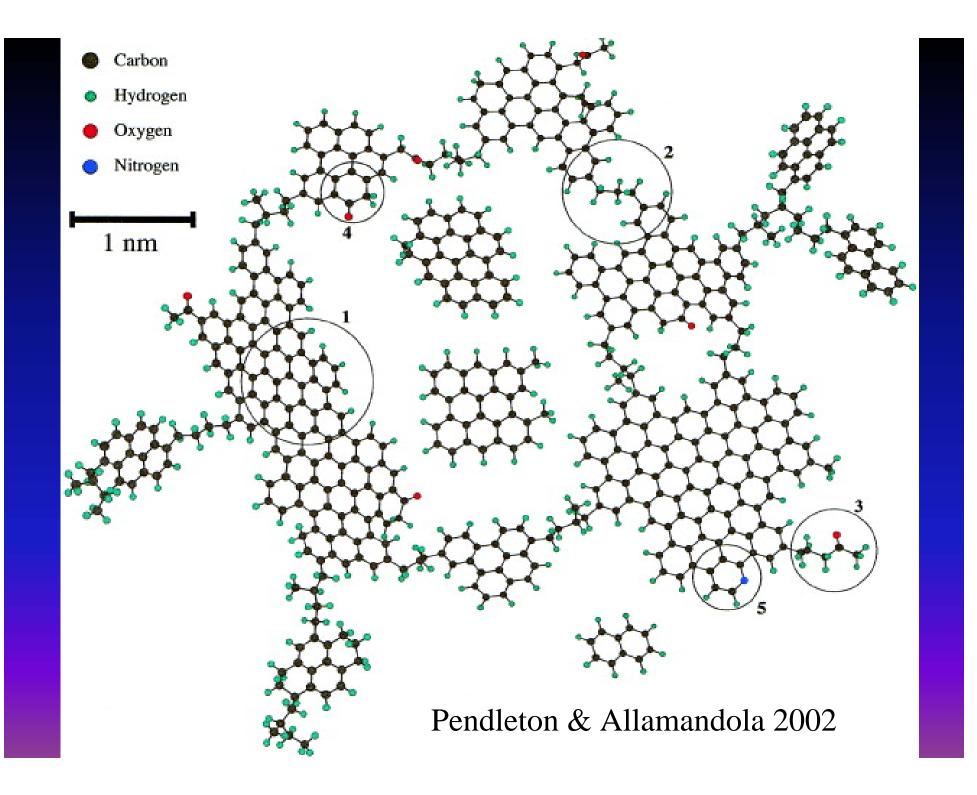
Sephton et al. 2004 ApJ 612, 588–591

Carbon in primitive meteorites

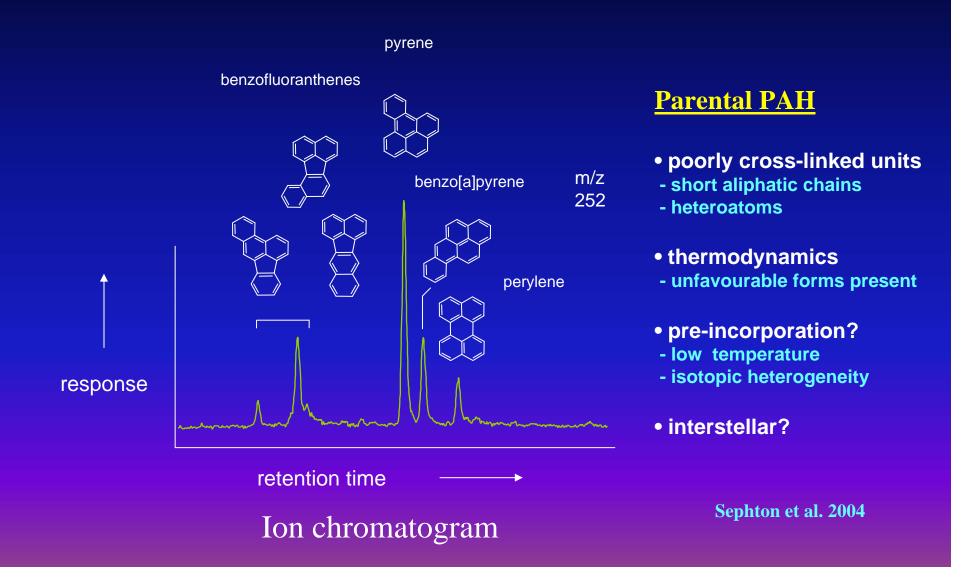
Abundance (wt%) $\delta^{13}C$ (%)


Whole rock	_	0 to -25
Organic matter	2.0	-13 to -21
Carbonate	0.2	+20 to +80
Diamond	0.04	-38
Graphite	0.005	-50 to +340
Silicon carbide	0.009	+1200

Carbonaceous chondrites – most pristine!

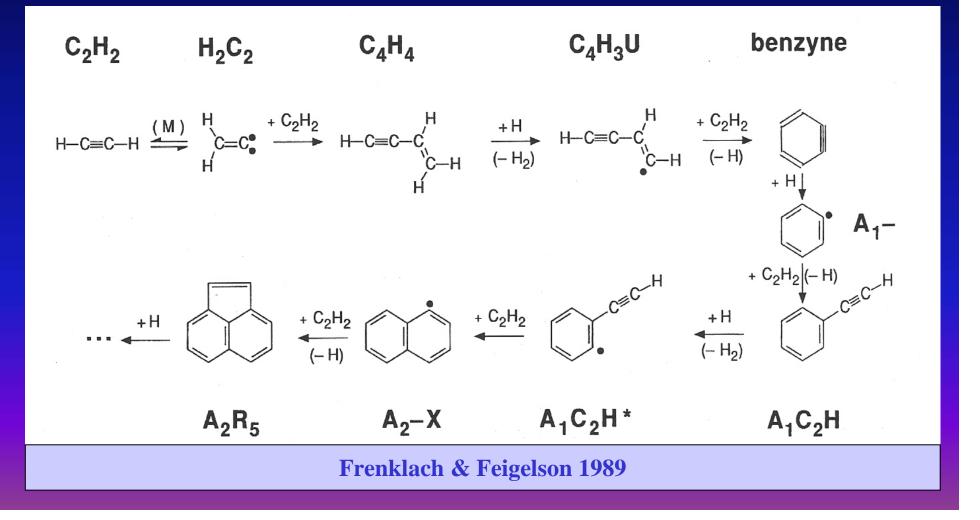

Murchison

Insoluble Carbon-fraction: 60-80 % aromatic carbon highly substituted small aromatic moieties branched by aliphatic chains



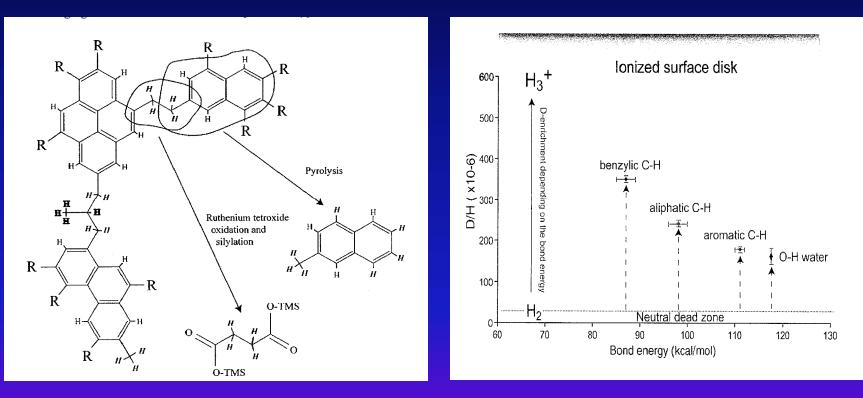
Origin of hydropyrolysate PAH

A hot or cold origin for aromatics ?

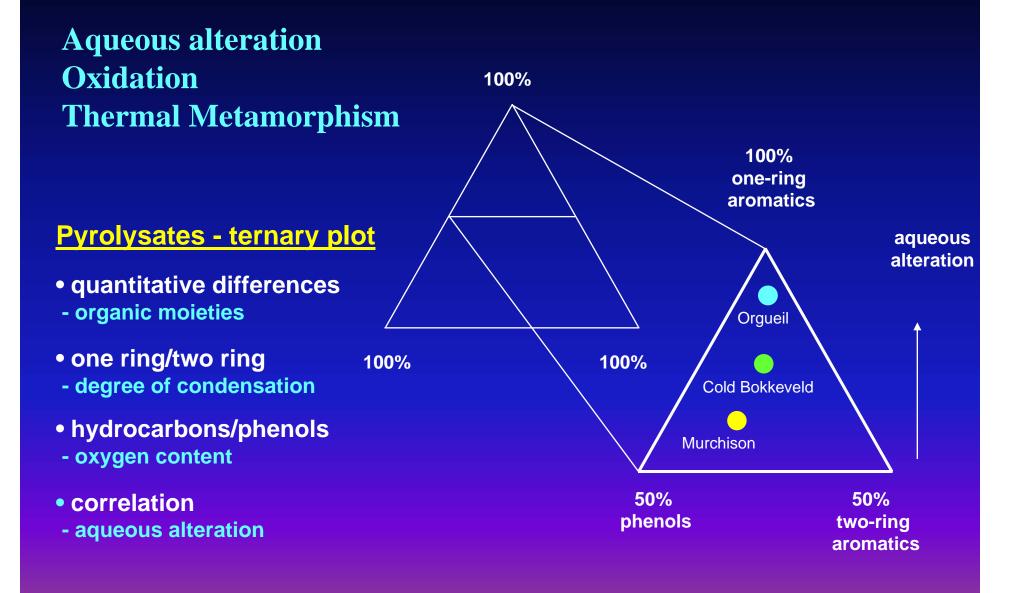

D-enrichment, hotspots ¹³C, ¹⁵N

Increase in δ¹³C and then decrease with increasing molecular size

Large fractionation in C isotopes (in Murchison -13.1 and -5.9 ‰ for pyrene and fluoranthene respectively)


The dominant reaction pathway of polycyclic aromatic hydrocarbons in circumstellar envelopes

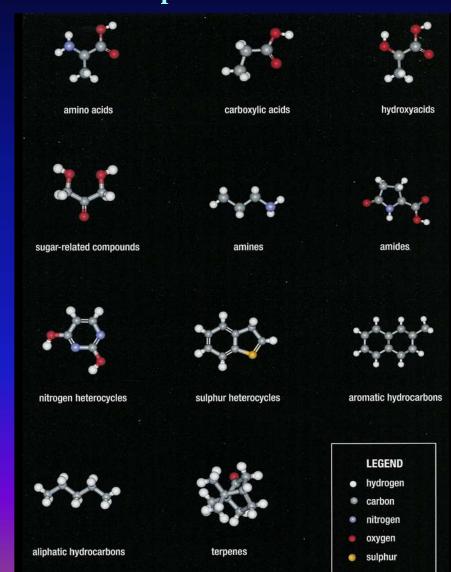
H abstraction, C₂H₂ addition, PAHs form at high T (900-1100 K)

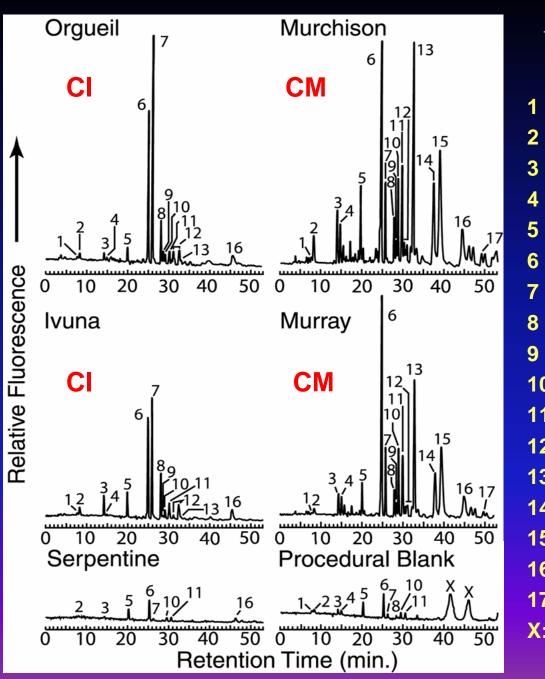

A solar system origin for D-enrichment in organic matter

(Remusat et al. 2006)

D/H ratio of benzylic, aliphatic and aromatic hydrogen and water as a function of the C-H bond energy. The water D/H indicates that this relation may illustrate a common process in the early solar system.

Quantitative relationships

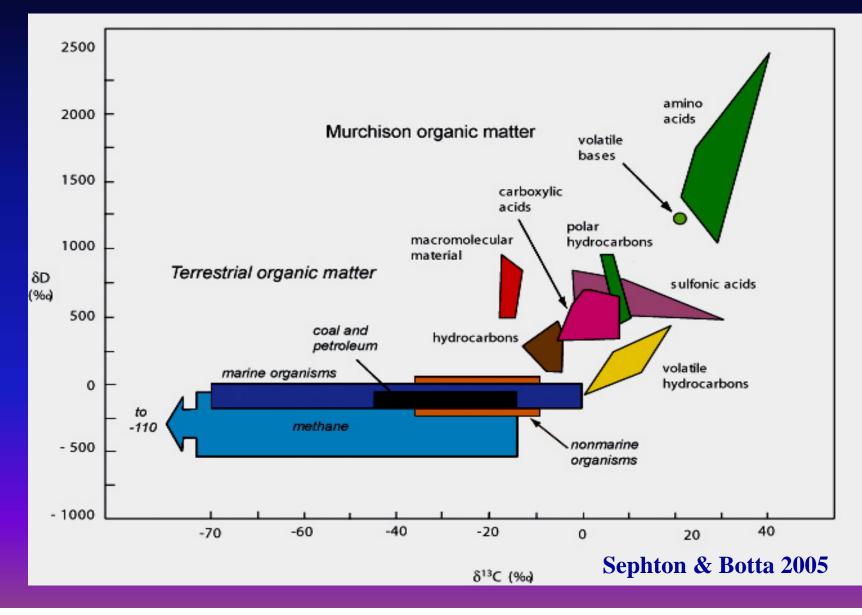



Organic compounds in the Murchison meteorite

Compound Class Concentration(ppm)

CO ₂ CO ²	106 0.06
CU CH	0.00
CH ₄ NH ₃	19
Aliphatic hydrocarbons	12-35
Aromatic hydrocarbons	15-28
Amino Acids	<u>60</u>
Monocarboxylic acids	332
Dicarboxylic acids	26
α-hydroxycarboxylic acids	14
Polyols (sugar-related)	~24
Basic N-heterocycles	0.05-0.5
Purines	1.2
Pyrimidines	0.06
Amines	8
Urea	25
Benzothiophenes	0.3
Alcohols	11
Aldehydes	11
Ketones	16

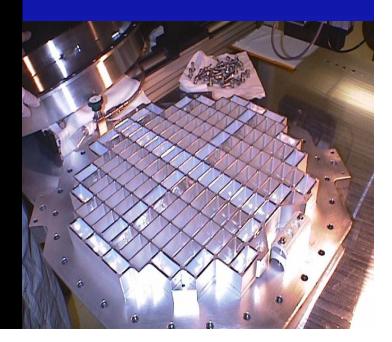
Sephton 2002



Amino Acids in Meteorite Extracts

- **1 D-Aspartic Acid**
- 2 L-Aspartic Acid
- 3 L-Glutamic Acid
- 4 D-Glutamic Acid
- 5 D,L-Serine
- 6 Glycine
- 7 β**-Alanine**
- 8 γ-Amino-*n*-butyric Acid (γ-ABA)
- **D**,L- β -Aminoisobutyric Acid (β -AIB)
- **10 D-Alanine**
- 11 L-Alanine
- **12** D,L- β -Amino-*n*-butyric Acid (β -ABA)
- 13 α-Aminoisobutyric Acid (AIB)
- 14 D,L- α -Amino-*n*-butyric Acid (α -ABA)
- 15 D,L-Isovaline
- 16 L-Valine
- 17 D-Valine
- X: unknown

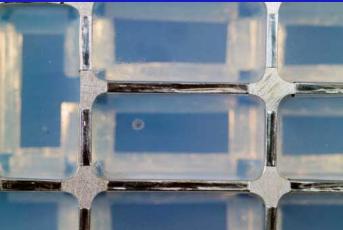
Ehrenfreund et al. 2001


Distinction between stable carbon and hydrogen isotope ratios in Murchison and life

Molecule	Hale-Bopp) ISM	
H ₂ O	100	100	
CO	12-23	1-60	
CO ₂	6	15-40	
CH ₄	1.5		
C_2H_2	0.1-0.3		
C_2H_6	0.6		
CH ₃ OH	2.4	1-25	
H ₂ CO	1.1		
НСООН	0.09	Production rates r	elative to water
HCOOCH ₃	0.08		
CH ₃ CHO	0.02	of organic molecul	es in the coma of
NH ₂ CHO	0.015	comet	
HCN	0.25	C/1995 O1 Hale-Bopp	
HNCO	0.10		opp
HNC	0.04		
CH ₃ CN	0.02	(Bockelee-Morvan	et al. 2004,
HC ₃ N	0.02	Ehrenfreund et a	
OCS	0.4		
CS ₂	0.2		
H ₂ CS	0.05		

FLYBY Comet Wild 2

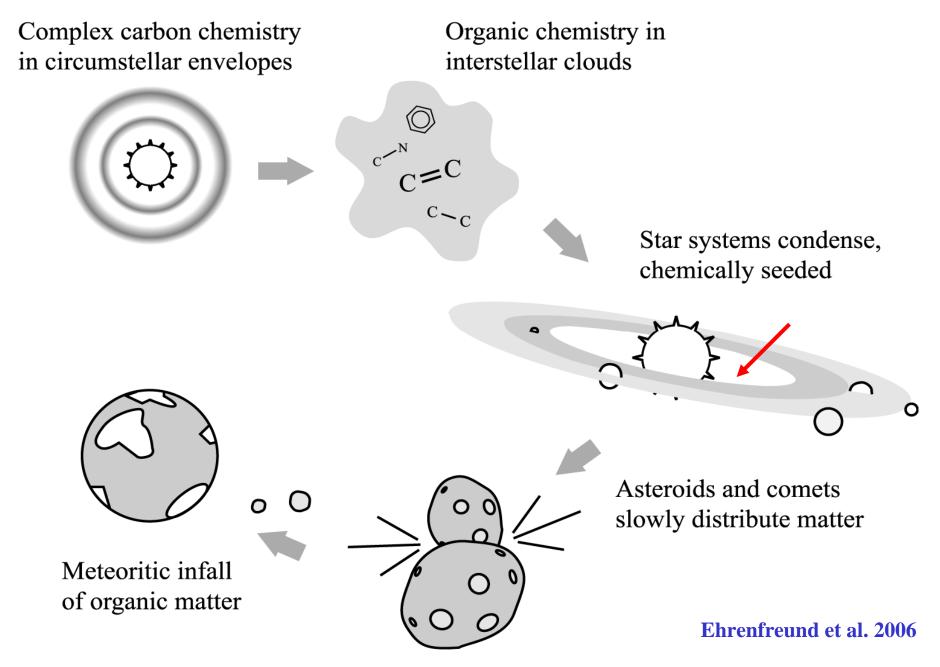
Capture of particles


Stardust touch down 15 January 2006 in Utah

Particles from a comet and interstellar dust have been returned to Earth

Thousands of impacts on the aerogel


Silicon-based solid 1,000 times less dense than glass



Stardust clues...

- Comet Wild 2 dust was predominantly material from our solar nebula – limited amount of preserved presolar material (isotopic O, McKeegan et al. 2006) – 1 CAI
- > Significant radial mixing in the early solar system
- Widely varying olivine and pyroxene compositions
 wide range of formation conditions/locations, no aqueous alteration (Zolensky et al. 2006)

Chemistry in space

Summary

Meteorites deliver a protracted record of chemical evolution and links between interstellar and solar system material

constraints on the physical and dynamical properties of early solar system formation

Extensive mixing in the solar nebula

Active solar nebula chemistry

Similar processes in extrasolar systems

