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Radio Astronomy Fundamentals

Holiday

EM wave properties

Radio telescope fundamentals

Radio telescopes - single dish and interferometers
Radio telescopes - single dish and interferometers

Holiday

Radiative Processes - continuum and line/ thermal and non-
thermal

Galactic Radio Astronomy - The Radio Sky and SNR [Synchrotron
radiation]




Radio Astronomy (cont’d)

|7
|18

04/24

05/01

05/08

05/15
05/22

05/29

06/05

06/12
06/19

Mid-Term Exam

Galactic Radio Astronomy - HIl regions [Bremsstrahlung
radiation, Recombination lines]

Galactic Radio Astronomy - Molecular Clouds, Star Formation,
and Chemistry [Molecular Transitions]

Galactic Radio Astronomy - Molecular Clouds, cont.

Galactic Radio Astronomy - Masers, Magnetic Fields [Polarization]

Galactic to Extragalactic Radio Astronomy - Radio Galaxies, HI
Clouds [2lcm line] and Molecular Clouds

Extragalactic Radio Astronomy - CMB and SZ Effect [Inverse
Compton Scattering]

Radio Stars, Pulsars, SETI, Modern Radio Telescopes, etc

Final Exam
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Rules?

Grades :
homework/attendance : 20%
project : 20%
mid-term exam : 30%

final exam : 30%




Radio Astronomy
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Early History
The Atmospheric Window
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The Early History

James Clerk Maxwell (1831-1879)

e Maxwell’s Equations [1860s-1870s] SamLesE "
Heinrich Hertz (1857-1894) ST
e transmitter of 5 meters in length [1888] e
Thomas A. Edison (1847-1931)

® First proposal on record to detect Solar radiation in radio [1890]

Sir Oliver J. Lodge (1851-1940)

® (perhaps) First attempt to detect cm waves from the Sun [1897-1900]

J. Wilsing (1856-1943) and J. Scheiner (1858-1913)

e First journal paper on an attempt to detect radio wave from the Sun [1896]
Charles Nordman [1900]

® An improved attempt to the above (as Nordman thought) experiment

Max Planck (1858-1947)

® Plank’s Law, quantization of radiation energy

Oliver Heaviside (1850-1925) together with Kennelly

® Heaviside layer for long range radio communication [1925]

Further radio experiments discouraged by the above two results

Guglielmo Marconi (1847-1937)

® First to send and receive signals across an ocean, from Newfoundland to
Cornwall. Commercial radiotelephone later became available

® 1909 Nobel prize (with Carl F. Braun)

|||||||




The Early History

e Karl Jansky (1905-1950)
® joined Bell Telephone Lab [1928] to investigate short wave (10m-20m)
transatlantic radio telephone service, the source of static in particular.
® The antenna for 20.5 MHz (14.5m) picked up three kinds of static:
® nearby thunderstorms, distant thunderstorms, faint steady hiss of unknown
origin
e celestial but no the Sun giving the repeating period
e cosmic signal from the Galaxy! [1933]
® 30m dish proposed but not approved by Bell Lab, later came the great
depression, no astronomer followed up the effort until...




e Grote Reber (1911-2002)

ham radio operator

applied for jobs in Bell Lab to work
with Jansky on cosmic radio waves in
1930s but was turned down.

Do it yourself! build a telescope (31.4
ft.) by himself in Wheaton, lllinois.
Parabolic dish reflector adopted for
receiving a wide range of
wavelengths/frequencies

failed at 3300MHz, 900MHz but LKy
succeeded at 160 MHz for confirming ., s
Jansky’s discovery [1938] -~
sky survey [1938-1943] opened radio | §
astronomy as a major research field |
after WWIL.
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Fic. T—Contours of constant intensity at 160 MHz and 480 MHz, taken at Wheaton, Illinois.

Galactic Radio Waves by Reber (Sky and Telescope 1949)
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The Early History

J.S. Hey

® British Army Operational Research Group analyzing occurrences of radar
jamming

® Radio emission from the Sun as a source [1942]

G.C. Southworth

® thermal radio emission at centimeter wavelengths [1942]

J.S. Hey, S.J. Parsons, J.W. Phillips

® fluctuations of radio emission from Cygnus [1946]

Oort (1900-1992) and van de Hulst

® Prediction of 2| cm Line Radiation [1945]

Harold Ewen (1922-) and Edward Purcell (1912-1997)

® Discovery of the 21 ¢cm Line [1950]

John Bolton

® Australia efforts in discovering discrete radio sources

Sir Martin Ryle

® Development of interferometric techniques




The Early History

® John Kraus (1910-2004)
® radio engineer
® |ed to the design and construction of the “Big Ear” telescope at Ohio Wesleyan
Univ. (late 1950s), later began the Ohio State SETI program (1973)
® The “Big Ear”
® flat reflector ~ 110 m wide / 33m high
parabolic reflector ~ 120 m wide / 23 m high
ground plane ~ 120 m wide / 166 m long
equivalent aperture ~ 52.5 m
1400 MHz, drift scan, beam-switching at 79 Hz




The Early History

® Arno Penzias (1933-) and Robert Wilson (1936-)
® discovery of Cosmic Microwave Background with the
6m antenna [1965]

® |978 Nobel prize
® Jocelyn Bell-Burnell (1943-) and Antony Hewish (1924-)
® discovery of radio pulsars predicted by theories of
stellar evolution [1967]
® 1974 Nobel prize (Sir Martin Ryle Antony Hewish
with Sir Martin Ryle)




The Atmospheric Window

® Astronomy - The Observations and Studies of
Celestial Objects

® media
® EM waves
® particles (cosmic rays, neutrinos, ions, dust...)
® Gravitational waves?
® procedure
® detection
calibration/analysis
imaging (if possible)
interpretation




The Atmospheric Window

e Ground-based
® easy access, low cost
e Traditionally, only optical window being utilized
e |imited by the atmosphere
® absorption (opacity)
® (thermal) emission
® gcattering
® turbulence
® jonization
e Limited by human interference
e knowledge of both factors above is critical for
observatory site selection
® Space-based

® ideal location but difficult to access and extremely
expensive




The Atmospheric Window

3
Kilometers ‘ ‘ Exosphere : Miles
400 -
Composition 320 1, E‘ 200
Temperature 200 532
160 - ; 100
Function >
80 + I+ mmi 50
: & _m—ﬂﬂhﬂﬁypr
50 i ......................................... ‘. ] .................... b Stratopause- Sl
I ,.-"" ,::
i .
20 1 57°C Equatorial unpﬂpause 1 1
10 |& polart ~MNormal lapse rate i
trnpaﬁé.ﬁ'sﬁ'ﬁfrﬂ"ﬂﬂﬂﬂ m %2 Mount
() 0 .35 F“f‘l 000 ﬂy”'/ 11— T Everest

oCi 00 —30 O 1532 400 800 1200
°F:_1g4 —22 325090 752 1472 2190
6




The Atmospheric Window

® Atmospheric structure (below 90 km)

P(z) = Py exp(—z/Hy)

R=8.32Joule K~ mole™!
Mp=0.029 kg
1,,=273 K
g=98ms"
= Hy~7992 m

2




The Atmospheric Window

® Atmospheric constituents (below 90 km)

® Minor constituents

0.036%

e ozone - UV absorber, maximum concentration @ 16
km

e water vapor - mixing ratio a strong dependence of
temperature, thus altitude, scale hight ~ 3km

® jons - significant ionization above 60 km via
photochemical reactions, several ionospheric layers
below 300 km, above that constant ionization up to
2000km

® aerosols: solid (ice/salt crystals, soil particles) and
liquid (water droplets)

Argon (Ar)
0.91134%
e carbon dioxide - IR absorber Carbon Dioxide fCOE‘\? \\ Trace gases




The Atmospheric Window

® Atmospheric absorption
® absorber
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The Atmospheric Window

® Atmospheric absorption
® absorber
® H,O,CO, O3, etc

® (via pure rotational molecular transitions)
® CO2,NO, CO,etc

® (via rotational-vibrational molecular transitions)
® CH4,COH,0,0,,03, etc

® (via electronic molecular transitions)
® ON,etc

® (via electronic transition of atoms/radicals)
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The Atmospheric Window

® Atmospheric absorption
® millimeter - pure rotational bands of H,O, O,
® submillimeter/IR - rotational and rotational-vibrational
bands of H2O, CO,
® near UV - electronic transitions of O3, O3; continuum
absorption of O,
® far UV - continuum absorption of N3
® ground-based astronomy is limited to near UV (>300nm from
a high site), visible, NIR (<25um) with discrete bands, (sub)
mm (>0.35mm) with non-negligible absorption, and
centimeter and above

21




The Atmospheric Window

® Atmospheric absorption (in spectroscopic mode)
® Telluric Bands
® | orentz profile due to pressure broadening
® e.g.absorption by O,, H,O
® |onospheric Plasma
® transparent to cm,mm wavelengths

22




The Atmospheric Window

® Atmospheric emission

® thermal emission
® below ~50 km where air density is high enough

e optically thin blackbody radiation from the atmosphere

e significant at NIR, (sub)mm
e airglow by fluorescence light from recombination at upper

atmosphere (100 km)

e emitter OI, Nal, Oz, OH, H

® continuous bland of emission lines

e stratospheric OH radical in NIR with strong spatial variation

® both sets limiting magnitude for observing faint sources
e application of differential measurements
e sky chopping, nodding, flat-fielding

23




The Atmospheric Window

Atmospheric scattering
® resulted from molecules and aerosols
® molecules: Rayleigh scattering in visible/NIR, anisotropic
® aerosols: Mie’s theory
Comparing emission and scattering, there is a boundary above which
emission always dominates - whether observing at day or night
becomes insignificant
Atmospheric turbulence
® inhomogeneous both spatially and temporally
e excited by ground surface, shearing...
® temperature fluctuations and the air refractive index
Atmospheric ionization
® clectron density fluctuations and the air refractive index
Changes of refractive index due to the above fluctuations
® seeing (position/size change), scintillation (intensity change)

24




The Atmospheric Window

® Human interference
® Jight pollution
® radio interference

ELF (3-30 Hz) : submarine communication

SLF (30-300 Hz) : submarine communication

ULF (300-3000 Hz) : mine communication

VLF (3-30 KHz) : submarine communication, avalanche beacons,
wireless heart rate monitors

LF (30-300 KHz) : navigation, tim signal, LW

MF (300-3000 KHz) : AM

HF (3-30 MHz) : SW, amateur radio

VHF (30-300 MHz) : FM, TV

UHF (300-3000 MHz) : TV, mobile phone, wireless LAN
SHF (3-30 GHz) : microwave, wireless LAN, radars
EHF (30-300 GHz) : high-speed microwave radio relay

® Space Pollution?!

Homework |Ib: How does the long wavelength cutoff you find in la compare

to the frequency allocation? Any application due to the cutoff?

25




The Atmospheric Window
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Radio Astronomy Fundamentals

® BlackBody Radiation and Brightness Temperature

2h3 1
B,(T)= 2 /KT _ 1

2hc? 1
By\(T)

T 0S5 ghe/AT _
B(T)= / B,(T)dv — / B,(T)d\
2h (= VP
:ﬁ/o I
2h kT , [~ X°
i d
( h ) /o o1
=oT"*
2mke
~15¢2h3
Vmar(GHZ)=58.789(>-)

o

T

K
T

kmax(cm)(E):O.28978
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Radio Astronomy Fundamentals

® BlackBody Radiation and Brightness Temperature

By (T)
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Radio Astronomy Fundamentals

® BlackBody Radiation and Brightness Temperature

Wien Displacement Law
dB,

v

T
Vinas(GH2)=58.789()

0
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Radio Astronomy Fundamentals

® BlackBody Radiation and Brightness Temperature

2m? 1

B.(T)= 2 /T _

Rayleigh — Jeans Law (hv << kT)
BY(T)="2kT

T:C_BRJ(T) check unit...

Think about |. effective temperature, 2. color temperature...
30




Radio Astronomy Fundamentals

® BlackBody Radiation and Brightness Temperature

dE=I,cos0 dt dA dQ2 dv
dW=I,cos0 dA dQ dv

dE=infinitesimal energy
dW =infinitesimal power
dt=infinitesimal time interval
dA=infinitesimal sur face area
dQ=infinitesimal solid angle
dv=infinitesimal bandwidth
O=the angle between the normal to dA
and the direction to d<Q2

I,=specific intensity or brightness

rate of energy transport, along a particular direction,
per unit area, per unit solid angle, and per unit frequency
31
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Radio Astronomy Fundamentals

® BlackBody Radiation and Brightness Temperature

dW, =dW,

dW] =Iv1d01d§21dv
SV:/ 1,(8,¢)cos0d Q2 dWr=I,,dordQ>dv
Qs

1 Jy=1 Jansky
=10"2°Wm 2Hz !
:10_23'ergs_1cm_sz_1

dQi=do, /R
dQ,=do; /R

dWl :Ivldﬁld(}z/dev
szZ[vdeQd(ﬁ /dev

Ivl — Iv2
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Homework |

I.1 :Where is the cutoff at the long wavelength end for radio transmission in the atmosphere?

[.2 :What is the temperature equivalent of the energy, E, for | electron volt, that is, | eV. If
this energy is contained in one photon, what is the wavelength of this phonoe? What is the
frequency in units of Hz? A commonly used equivalent energy unit is cm™'.What is the value
for 1 eVin cm™?

[.3 : A unit commonly used in (radio) astronomy is flux density, Sy. The usual unit for S, is
Jansky (Jy), which is 102 W m2 Hz'!'. Calculate the flux density in ]y, of a small angular size
microwave source with an output of 600 WV at a distance of 10 m, if the power is isotropically
radiated and is uniformly emitted over a bandwidth of 10® Hz (= | MHz)?

.4 : What is the flux density, Sy, of a source which radiates a power of 600 W in the
microwave frequency band uniformly form 2.7 GHz to 2.8 GHz, when placed at the distance
of the Moon?

[.5 : Imagine that there is one kind of anti-collision radar installed on automobiles. It operates
at around 70 GHz. The bandwidth is around 100 MHz, and at about a distance of 3 m, the
power per area is 107 W m-2, Assume the power level is uniform over the entire bandwidth,
what is the flux density of this radar at | km distance? Typical radio telescopes can measure
flux densities down to mJy level. At what distance will such radar disturb radio astronomy
astronomy measurements?
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