- Polarization (monochromatic wave case)
 - consider at an arbitrary position (r=0)

 $E = E_0 e^{-i\omega t}$ $= (\hat{x}E_1 + \hat{y}E_2)e^{-i\omega t}$

$$E_1 = A_1 e^{i\phi_1} \text{ and } E_2 = A_2 e^{i\phi_2}$$
$$E_x = A_1 cos(\omega t - \phi_1) \text{ and } E_y = A_2 cos(\omega t - \phi_2)$$

• draw figure

 $E_{x'} = A_0 \cos\beta \cos\omega t$ and $E_{y'} = -A_0 \sin\beta \sin\omega t$ $-\pi/2 \le \beta \le \pi/2$

$$(\frac{E_{x'}}{A_0 \cos\beta})^2 + (\frac{E_{y'}}{A_0 \sin\beta})^2 = 1$$

• Polarization and Stokes parameters (monochromatic wave case)

 $E_x = A_0(\cos\beta \cos\chi \cos\omega t + \sin\beta \sin\chi \sin\omega t)$ $E_y = A_0(\cos\beta \sin\chi \cos\omega t - \sin\beta \cos\chi \sin\omega t)$

 $A_1 \cos \phi_1 = A_0 \cos \beta \cos \chi$ $A_1 \sin \phi_1 = A_0 \sin \beta \sin \chi$ $A_2 \cos \phi_2 = A_0 \cos \beta \sin \chi$ $A_2 \sin \phi_2 = -A_0 \sin \beta \cos \chi$

$$I \equiv A_1^2 + A_2^2 = A_0^2 \qquad A_0 = \sqrt{I}$$

$$Q \equiv A_1^2 - A_2^2 = A_0^2 \cos 2\beta \cos 2\chi \qquad \sin 2\beta = \frac{V}{I}$$

$$U \equiv 2A_1 A_2 \cos(\phi_1 - \phi_2) = A_0^2 \cos 2\beta \sin 2\chi \qquad \tan 2\chi = \frac{U}{Q}$$

$$V \equiv 2A_1 A_2 \sin(\phi_1 - \phi_2) = A_0^2 \sin 2\beta \qquad \tan 2\chi = \frac{U}{Q}$$

$$I^2 = Q^2 + U^2 + V^2$$

- Polarization
 - polarization measurement
 - Linear feeds or Circular feeds

Linear PolarizationCircular Polarization $S_0 = I = E^2 = S$ right-handed (RCP)left-handed (LCP) $S_0 = I = E^2 = S$ $S_0 = I = S$ $S_0 = I = S$ $S_1 = Q = I \cos 2\chi$ $S_1 = Q = 0$ $S_1 = Q = 0$ $S_2 = U = I \sin 2\chi$ $S_2 = U = 0$ $S_2 = U = 0$ $S_3 = V = 0$ $S_3 = V = S$ $S_3 = V = -S$

- Measuring magnetic fields molecular line polarization
 - molecular line
 - Zeeman effect
 - Circular polarization
 - Zeeman, Lorentz (1902 Nobel prize)
 - line splitting
 - "strength" of B-field "along" the line of sight

Zeeman effect

Coutercy of Dr. C.C. Chiong

- Splitting of spectral lines into multiple components due to the coupling of an atom's or molecule's magnetic moment with an external magnetic field. σ+ and σ- has signals with different circular polarization. Different g factor for different molecules and transition.
- Suitable atoms or molecules are HI, OH, H₂O, CSS, CN, SO etc.

Most successful detection cases of Zeeman measurement are with HI, OH and H₂O.

Zeeman effect

Coutercy of Dr. C.C. Chiong

- If the splitting is large (RCP, LCP well separated), the total field strength can be derived (only OH and H₂O maser).
- If the splitting is small, it provides only the "line-of-sight" component Blos.

Coutercy of Dr. C.C. Chiong

Current Status

• Bear in mind first that In most cases, only line-of-sight or plane-of-sky component is measured.

• Observational data supporting the existing star formation theories are still rare, because it is hard to measure the strength of interstellar magnetic fields.

Theories : The B- ρ relation: $|B| \propto \rho \kappa$, $\kappa = 1/2$ to 1/3 (Mouschovias, 1985) Observations :

Crutcher (1999) reviewed 15 detections and 3 upper limits towards the dense region.

$$B_{los} \propto \rho^{0.47\pm0.08}$$

Radio Astronomy -Dust Emission

• dust

• continuum emission - modified blackbody radiation due to the wavelength dependence of dust grain emissivity.

$$au_{dust} \propto \nu^{\beta} with \ \beta \sim 1-2$$

Radio Astronomy -Dust Emission and Cores

oIRAM 30 m

o37 (MAMBO-1)/117 (MAMBO 2) pixel bolometer array at 1.2 mm

Radio Astronomy -Polarized Dust Emission and Magnetic Field

- Measuring magnetic fields dust continuum polarization
 - dust
 - continuum (emission/absorption; NOT scattered)
 - Linear polarization
 - due to alignment (see next page)
 - grain particles with magnetic moment (due to spinning) precess around the B-field
 - polarization provides the "direction" of B-field (perpendicular or parallel) "in" the plane of the sky
 - detail mechanism not secure
 - various competing processes including collision (temperature/density)

Radio Astronomy -Polarized Dust Emission and Magnetic Field

- Dust continuum polarization mechanism
 - dust grain alignment (Lazarian, Goodman, Myers 1997, ApJ)

Alignment Mechanism	Introduced	Description	Quantitative Theory	Special Conditions for Success
1. Gold	Gold 1951	Alignment of thermally rotating grains aligned by supersonic flows; originally: radiation pressure on grain; fur ther development: Alfvénic waves (Lazarian 1994; Lazarian & Draine 1997b), ambipolar diffusion (Roberge et al. 1995)	Purcell 1969; Purcell & Spitzer 1971; Dolginov & Mytrophanov 1976; Lazarian 1994; Roberge et al. 1995; Roberge & Hanany 1990; Lazarian 1997 a	Supersonic drift, rotation with thermal velocities
 Mechanical alignment of suprathermally rotating grains 	Lazarian 1995a	Alignment by suprathermally rotating grains by supersonic flows due to cross-section difference and due to gaseous bombardment during crossover events	Lazarian 1995a, 1995c; Lazarian & Efroimsky 1996; Lazarian, Efroimsky, & Ozik 1996	Supersonic drift, rotation with suprathermal velocities
3. Davis-Greenstein	Davis & Greenstein 1951	Alignment of thermally rotating grains through paramagnetic relaxation; originally: relaxation of paramagnetic grains; further development: relaxation of SPM grains (Jones & Spitzer 1967)	Jones & Spitzer 1967; Purcell & Spitzer 1971; Mathis 1986; Roberge et al. 1993; Lazarian 1995d; Lazarian & Roberge 1997a; Lazarian 1997b	Presence of SPM impurities
4. Purcell	Purcell 1975, 1979; Spitzer & McGlynn 1979	Alignment of suprathermally rotating grains through paramagnetic relaxation; originally: efficiency of alignment is limited for ordinary paramagnetic grains (Spitzer & McGlynn 1979); further development: incomplete Barnet relaxation enhances alignment (Lazarian & Draine 1997a)	Purcell 1979; Spitzer & McGlynn 1979; Lazarian 1995c, 1995e; Lazarian & Draine 1997a; Draine & Lazarian 1997a	Suprathermal rotation due to H_2 formation
 Alignment by radiation torques 	Draine & Weingartner 1996, 1997	Alignment due to the difference in scattering right and left polarized quanta	Draine & Weingartner 1996, 1997; Draine & Lazarian 1998	Radiation of short wavelength
 Mechanical alignment of helical grains 	Lazarian 1995b	Helical grains aligned by supersonic flows; atoms bounce off the grain surface of helical shape or off a grain with variation of the accommodation coefficient	Does not exist	Supersonic drift, special shape

TABLE 1
MAJOR MECHANISMS OF GRAIN ALIGNMENT

Radio Astronomy -Polarized Dust Emission and Magnetic Field

The large scale field is well aligned with the minor axis and the mass-to-flux ratio is slightly over critical

BEST OBSERVATIONAL CASE SO FAR!!!

Radio Astronomy -Dust Emission and Star Formation at High z

o37/9-pixel (SCUBA-1)/5100-pixel (SCUBA-2) bolometer array at 0.85/0.45 mm

Radio Astronomy -Dust Emission and Star Formation at High z

Dust emission from high-z galaxies in ongoing SHADES survey

Radio Astronomy -Synchrotron Radiation and Pulsar Timing

Binary Pulsar PSR 1913+16

- o dish diameter of 305 m
 o spherical dish, spherical aberration corrected inside Gregorian dome
- feeds illuminate 213x237 m of dish
- sky coverage $1^{\circ} 20' \le \delta \le 39^{\circ} 02'$
- nearly complete wavelength coverage from ~1 m (~300 MHz) to ~3 cm (~10 GHz)
- angular resolution from ~15' (at 1 m) to ~30" (at 3 cm)

Radio Astronomy -Synchrotron Radiation and Pulsar Timing

• Binary Pulsar PSR 1913+16

- o dish diameter of 305 m
 o spherical dish, spherical aberration corrected inside Gregorian dome
 o feeds illuminate 213x237 m of dish
 o sky coverage -1° 20' ≤ δ ≤ 39° 02'
 o nearly complete wavelength coverage from ~1 m (~300 MHz) to ~3 cm (~10 GHz)
- angular resolution from ~15' (at 1 m) to ~30" (at 3 cm)

Radio Astronomy -Synchrotron Radiation and Pulsar Timing

• Binary Pulsar PSR 1913+16

oten 25-m antennas

wavelength bands 90, 50, 21, 13, 6, 4, 2, 1, 0.7 and 0.3 cm (0.3-90 GHz)
dual polarizations
maximum baselines of 8611 km
angular resolutions as high as ~22 marcs at 90 cm to 72 µarcs at ~0.3 cm

 signals received at each antenna recorded on hard disk later correlated (VLBI) at Array
 Operations in Soccoro, New Mexico

- examples
 - radio galaxies

quasars (quasi-stellar radio sources)

- radio jets and superluminal motion
 - 3C279 (25 light yrs in 7 yrs)

- extragalactic radio sources
 - superluminal motion and relativistic beaming

doppler boosting $\approx 1/8\gamma^3$

Fig. 13.8. Apparent superluminal motion results when the radiating source is moving so fast that it nearly atches up with its own radiation. Assume that a radiating plasma cloud is ejected from the origin, O, with a velocity v in a direction θ with respect to the line of sight. After a time t, the cloud has moved a listance vt. The motion, projected along the line of sight is $vt \cos \theta$, and projected perpendicular to the ine of sight, $vt \sin \theta$. A distant observer sees the emission delayed by a time $t(c - v \cos \theta) = ct(1 - \beta \cos \theta)$ compared to the "signal" radiated when the cloud was at O. The apparent transverse velocity seen by he observer is then $(vt \sin \theta)/[ct(1 - \beta \cos \theta)] = \beta \sin \theta/(1 - \beta \cos \theta)$.

$$\upsilon_{app} = \frac{\upsilon \, sin\theta}{1 - \beta cos\theta}$$