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E=E0e−iωt

=(x̂E1+ ŷE2)e−iωt

(
Ex′

A0 cosβ
)2+(

Ey′

A0 sinβ
)2 = 1

E1 = A1eiφ1 and E2 = A2eiφ2

Ex = A1cos(ωt−φ1) and Ey = A2cos(ωt−φ2)

Ex′ = A0 cosβ cosωt and Ey′ =−A0 sinβ sinωt
−π/2≤ β ≤ π/2

• Polarization (monochromatic wave case)

• consider at an arbitrary position (r=0)

• draw figure
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• Polarization and Stokes parameters (monochromatic wave 
case)

Ex=A0(cosβ cosχ cosωt+ sinβ sinχ sinωt)
Ey=A0(cosβ sinχ cosωt− sinβ cosχ sinωt)

I≡A21+A22 = A20
Q≡A21−A22 = A20 cos2β cos2χ
U≡2A1A2cos(φ1−φ2) = A20 cos2β sin2χ
V≡2A1A2sin(φ1−φ2) = A20 sin2β

A0=
√
I

sin 2β=
V
I

tan 2χ=
U
Q

A1 cosφ1=A0 cosβ cosχ
A1 sinφ1=A0 sinβ sinχ
A2 cosφ2=A0 cosβ sinχ
A2 sinφ2=−A0 sinβ cosχ

I2 = Q2+U2+V 2
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• Polarization

• polarization measurement

• Linear feeds or Circular feeds

S0=I = S
S1=Q= 0
S2=U = 0
S3=V = S

S0=I = S
S1=Q= 0
S2=U = 0
S3=V =−S

Linear Polarization
Circular Polarization

right-handed (RCP) left-handed (LCP)
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S0 = I = E2
= S

S1 = Q = Icos 2χ

S2 = U = Isin 2χ

S3 = V = 0
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• Measuring magnetic fields - molecular line polarization

• molecular line

• Zeeman effect

• Circular polarization

• Zeeman, Lorentz (1902 Nobel prize)

• line splitting

• “strength” of B-field “along” the line of sight
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Zeeman effect

• Splitting of spectral lines into multiple components due to the coupling 
of an atom‘s or molecule‘s magnetic moment with an external 
magnetic field. σ+ and σ- has signals with different circular 
polarization. Different g factor for different  molecules and transition.

• Suitable atoms or molecules are HI, OH, H2O, CSS, CN, SO etc.

• Most successful detection cases of Zeeman measurement are with HI, 
OH and H2O. 

              

SO(10-01)

Coutercy of Dr. C.C. Chiong
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Zeeman effect

• If the splitting is large (RCP, LCP well separated), the total field strength 
can be derived (only OH and H2O maser).

• If the splitting is small, it provides only the „line-of-sight“ component 
Blos.
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Coutercy of Dr. C.C. Chiong
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Zeeman effect

Crutcher and Troland  2000 ApJL

B(l.o.s.) ~ 10 micro Gauss
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Coutercy of Dr. C.C. Chiong
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Current Status
• Bear in mind first that In most cases, only line-of-sight or plane-of-sky 
component is measured.
• Observational data supporting the existing star formation theories are still 
rare, because it is hard to measure the strength of interstellar magnetic 
fields.

Theories :
The B-ρ relation: |B| ∝ ρκ, 
κ = 1/2 to 1/3 (Mouschovias, 1985)
Observations :
Crutcher (1999) reviewed 15 detections and 3 

upper limits towards the dense region. 
   

   Blos ∝ ρ0.47±0.08
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• dust  

• continuum emission - modified blackbody radiation due 
to the wavelength dependence of dust grain emissivity.
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τdust ∝ νβ with β ∼ 1 − 2
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oIRAM 30 m

o37 (MAMBO-1)/117 (MAMBO 2) pixel bolometer array at 1.2 mm 
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• Dust in ρ Ophiuchus Star-Forming Region
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Motte et al. (1998)



• Measuring magnetic fields - dust continuum polarization

• dust  

• continuum (emission/absorption; NOT scattered)

• Linear polarization

• due to alignment (see next page)

• grain particles with magnetic moment (due to 
spinning) precess  around the B-field

• polarization provides the “direction” of B-field 
(perpendicular or parallel) “in” the plane of the 
sky

• detail mechanism not secure

• various competing processes including collision 
(temperature/density)
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• Dust continuum polarization mechanism

• dust grain alignment (Lazarian, Goodman, Myers 1997, ApJ)
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Hour glass shape of the magnetic field structure in the circumbinary envelope

The large scale field is well aligned with the minor axis and the mass-to-flux ratio is 
slightly over critical

BEST OBSERVATIONAL CASE SO FAR!!!

Girart, Rao, & Marrone 2006

Polarization B-field
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M82 from ISO, Beelen and Cox



o37/9-pixel (SCUBA-1)/5100-pixel (SCUBA-2) bolometer array at 
0.85/0.45 mm 
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Dust emission from high-z galaxies in ongoing SHADES survey

Coppin et al. (2006)



• Binary Pulsar PSR 1913+16
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o dish diameter of 305 m

o spherical dish, spherical aberration 
corrected inside Gregorian dome

o feeds illuminate 213x237 m of dish

o sky coverage -1o 20’ ≤ δ ≤ 39o 02’

o nearly complete wavelength coverage 
from ~1 m (~300 MHz) to ~3 cm 
(~10 GHz)


o angular resolution from ~15’ (at 1 m) 
to ~30” (at 3 cm) 



• Binary Pulsar PSR 1913+16
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o dish diameter of 305 m

o spherical dish, spherical aberration 
corrected inside Gregorian dome

o feeds illuminate 213x237 m of dish

o sky coverage -1o 20’ ≤ δ ≤ 39o 02’

o nearly complete wavelength coverage 
from ~1 m (~300 MHz) to ~3 cm 
(~10 GHz)


o angular resolution from ~15’ (at 1 m) 
to ~30” (at 3 cm) 



• Binary Pulsar PSR 1913+16
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H2O Ice in Craters on MercuryNo H2O ice in Lunar Craters



oten 25-m antennas 

o wavelength bands 90, 50, 21, 13, 6, 
4, 2, 1, 0.7 and 0.3 cm (0.3-90 GHz) 

odual polarizations

omaximum baselines of 8611 km

oangular resolutions as high as ~22 
marcs at 90 cm to 72 μarcs at ~0.3 
cm

osignals received at each antenna 
recorded on hard disk later 
correlated (VLBI) at Array 
Operations in Soccoro, New 
Mexico
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• examples

• radio galaxies                     and        quasars (quasi-stellar radio sources)

3C334
Cygnus A

M87 PKS B2300-189
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Radio Jets from M87

VLA at 90 cm VLA at 20 cm

Junor et al. (1999)

VLBA at 0.7 cm

~30 rs
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• radio jets and superluminal motion

• 3C279 (25 light yrs in 7 yrs)
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• extragalactic radio sources

• superluminal motion and relativistic beaming

υapp =
υ sinθ
1−βcosθ

doppler boosting≈ 8γ3

doppler boosting≈ 1/8γ3
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