- Polarization (monochromatic wave case)
 - consider at an arbitrary position (r=0)

 $E = E_0 e^{-i\omega t}$ $= (\hat{x}E_1 + \hat{y}E_2)e^{-i\omega t}$

$$E_1 = A_1 e^{i\phi_1} \text{ and } E_2 = A_2 e^{i\phi_2}$$
$$E_x = A_1 cos(\omega t - \phi_1) \text{ and } E_y = A_2 cos(\omega t - \phi_2)$$

• draw figure

 $E_{x'} = A_0 \cos\beta \cos\omega t$ and $E_{y'} = -A_0 \sin\beta \sin\omega t$ $-\pi/2 \le \beta \le \pi/2$

$$(\frac{E_{x'}}{A_0 \cos\beta})^2 + (\frac{E_{y'}}{A_0 \sin\beta})^2 = 1$$

• Polarization and Stokes parameters (monochromatic wave case)

 $E_x = A_0(\cos\beta \cos\chi \cos\omega t + \sin\beta \sin\chi \sin\omega t)$ $E_y = A_0(\cos\beta \sin\chi \cos\omega t - \sin\beta \cos\chi \sin\omega t)$

 $A_1 \cos \phi_1 = A_0 \cos \beta \cos \chi$ $A_1 \sin \phi_1 = A_0 \sin \beta \sin \chi$ $A_2 \cos \phi_2 = A_0 \cos \beta \sin \chi$ $A_2 \sin \phi_2 = -A_0 \sin \beta \cos \chi$

$$I \equiv A_1^2 + A_2^2 = A_0^2 \qquad A_0 = \sqrt{I}$$

$$Q \equiv A_1^2 - A_2^2 = A_0^2 \cos 2\beta \cos 2\chi \qquad \sin 2\beta = \frac{V}{I}$$

$$U \equiv 2A_1 A_2 \cos(\phi_1 - \phi_2) = A_0^2 \cos 2\beta \sin 2\chi \qquad \tan 2\chi = \frac{U}{Q}$$

$$V \equiv 2A_1 A_2 \sin(\phi_1 - \phi_2) = A_0^2 \sin 2\beta \qquad \tan 2\chi = \frac{U}{Q}$$

$$I^2 = Q^2 + U^2 + V^2$$

- Polarization
 - polarization measurement
 - Linear feeds or Circular feeds

Linear PolarizationCircular Polarization $S_0 = I = E^2 = S$ right-handed (RCP)left-handed (LCP) $S_0 = I = E^2 = S$ $S_0 = I = S$ $S_0 = I = S$ $S_1 = Q = I \cos 2\chi$ $S_1 = Q = 0$ $S_1 = Q = 0$ $S_2 = U = I \sin 2\chi$ $S_2 = U = 0$ $S_2 = U = 0$ $S_3 = V = 0$ $S_3 = V = S$ $S_3 = V = -S$

- Measuring magnetic fields molecular line polarization
 - molecular line
 - Zeeman effect
 - Circular polarization
 - Zeeman, Lorentz (1902 Nobel prize)
 - line splitting
 - "strength" of B-field "along" the line of sight

Zeeman effect

Coutercy of Dr. C.C. Chiong

- Splitting of spectral lines into multiple components due to the coupling of an atom's or molecule's magnetic moment with an external magnetic field. σ+ and σ- has signals with different circular polarization. Different g factor for different molecules and transition.
- Suitable atoms or molecules are HI, OH, H₂O, CSS, CN, SO etc.

Most successful detection cases of Zeeman measurement are with HI, OH and H₂O.

Zeeman effect

Coutercy of Dr. C.C. Chiong

- If the splitting is large (RCP, LCP well separated), the total field strength can be derived (only OH and H₂O maser).
- If the splitting is small, it provides only the "line-of-sight" component Blos.

Coutercy of Dr. C.C. Chiong

Current Status

• Bear in mind first that In most cases, only line-of-sight or plane-of-sky component is measured.

• Observational data supporting the existing star formation theories are still rare, because it is hard to measure the strength of interstellar magnetic fields.

Theories : The B- ρ relation: $|B| \propto \rho \kappa$, $\kappa = 1/2$ to 1/3 (Mouschovias, 1985) Observations :

Crutcher (1999) reviewed 15 detections and 3 upper limits towards the dense region.

$$B_{los} \propto \rho^{0.47\pm0.08}$$

Radio Astronomy -Dust Emission

• dust

• continuum emission - modified blackbody radiation due to the wavelength dependence of dust grain emissivity.

$$\tau_{dust} \propto \nu^{\beta} with \ \beta \sim 1-2$$

Radio Astronomy -Polarized Dust Emission and Magnetic Field

- Measuring magnetic fields dust continuum polarization
 - dust
 - continuum (emission/absorption; NOT scattered)
 - Linear polarization
 - due to alignment (see next page)
 - grain particles with magnetic moment (due to spinning) precess around the B-field
 - polarization provides the "direction" of B-field (perpendicular or parallel) "in" the plane of the sky
 - detail mechanism not secure
 - various competing processes including collision (temperature/density)

Radio Astronomy -Polarized Dust Emission and Magnetic Field

- Dust continuum polarization mechanism
 - dust grain alignment (Lazarian, Goodman, Myers 1997, ApJ)

Alignment Mechanism	Introduced	Description	Quantitative Theory	Special Conditions for Success
1. Gold	Gold 1951	Alignment of thermally rotating grains aligned by supersonic flows; originally: radiation pressure on grain; fur ther development: Alfvénic waves (Lazarian 1994; Lazarian & Draine 1997b), ambipolar diffusion (Roberge et al. 1995)	Purcell 1969; Purcell & Spitzer 1971; Dolginov & Mytrophanov 1976; Lazarian 1994; Roberge et al. 1995; Roberge & Hanany 1990; Lazarian 1997 a	Supersonic drift, rotation with thermal velocities
 Mechanical alignment of suprathermally rotating grains 	Lazarian 1995a	Alignment by suprathermally rotating grains by supersonic flows due to cross-section difference and due to gaseous bombardment during crossover events	Lazarian 1995a, 1995c; Lazarian & Efroimsky 1996; Lazarian, Efroimsky, & Ozik 1996	Supersonic drift, rotation with suprathermal velocities
3. Davis-Greenstein	Davis & Greenstein 1951	Alignment of thermally rotating grains through paramagnetic relaxation; originally: relaxation of paramagnetic grains; further development: relaxation of SPM grains (Jones & Spitzer 1967)	Jones & Spitzer 1967; Purcell & Spitzer 1971; Mathis 1986; Roberge et al. 1993; Lazarian 1995d; Lazarian & Roberge 1997a; Lazarian 1997b	Presence of SPM impurities
4. Purcell	Purcell 1975, 1979; Spitzer & McGlynn 1979	Alignment of suprathermally rotating grains through paramagnetic relaxation; originally: efficiency of alignment is limited for ordinary paramagnetic grains (Spitzer & McGlynn 1979); further development: incomplete Barnet relaxation enhances alignment (Lazarian & Draine 1997a)	Purcell 1979; Spitzer & McGlynn 1979; Lazarian 1995c, 1995e; Lazarian & Draine 1997a; Draine & Lazarian 1997a	Suprathermal rotation due to H_2 formation
 Alignment by radiation torques 	Draine & Weingartner 1996, 1997	Alignment due to the difference in scattering right and left polarized quanta	Draine & Weingartner 1996, 1997; Draine & Lazarian 1998	Radiation of short wavelength
 Mechanical alignment of helical grains 	Lazarian 1995b	Helical grains aligned by supersonic flows; atoms bounce off the grain surface of helical shape or off a grain with variation of the accommodation coefficient	Does not exist	Supersonic drift, special shape

TABLE 1					
MAJOR MECHANISMS OF GRAIN ALIGNMENT					

Radio Astronomy -Polarized Dust Emission and Magnetic Field

The large scale field is well aligned with the minor axis and the mass-to-flux ratio is slightly over critical

BEST OBSERVATIONAL CASE SO FAR!!!

Fig. 1.1. A modern reduction of Jansky's data taken on 16 September 1932 (after Sullivan 1978). The contour map is in galactic coordinates in which 0⁻ large decorresponds to the plane of the Milky Way and 0° longitude corresponds to the galactic center. Contours are labeled in 1000 K.

- CMB
 - topics
 - anisotropy (power spectrum)
 - polarization
 - SZ Effect
 - experiments (e.g. http://cfa-www.harvard.edu/~mwhite/cmbexptlist.html)

experiment	type	freq(GHz)	Scale(I)
COBE	space	30-90	2-30
Boomerang	balloon	90-420	10-700
MAXIMA	balloon	150-420	50-700
CBI	ground	26-36	300-3000
DASI	ground	26-36	125-700
WMAP	space	22-90	2-1000
AMiBA	ground	70-90(?)	SZ
SZA	ground	30-90	SZ
Plank	space	30-850	2-2000

- CMB experiments
 - space satellites

COBE

WMAP

22

- CMB experiments
 - balloons

Boomerang

- References
 - Birkinshaw 1999, Physics Reports "The Sunyaev-Zel'dovich Effect"
 - Carlstrom 2002, ARA&A, 40, 643
 "Cosmology with the Sunyaev-Zel'dovich Effect"
- Thomson scattering
 - photon scattering off electrons at rest
 - $hv \ll m_e c^2$ in electron's rest frame

- References
 - Birkinshaw 1999, Physics Reports "The Sunyaev-Zel'dovich Effect"
 - Carlstrom 2002, ARA&A, 40, 643
 "Cosmology with the Sunyaev-Zel'dovich Effect"
- Inverse Compton Scattering
 - photon scattering off electrons in motion
 - $hv \ll m_e c^2$ in electron's rest frame still

- Inverse Compton Scattering
 - with relativistic electrons

26

- Sunyaev-Zel'dovich effect
 - Sunyaev & Zel'dovich (1970)
 - CMB photons interact with 10⁸K plasma in clusters, typically extend on the Mpc scale (angular size of several arcmins)
 - no confirmed results until late 1990's

$$\frac{\Delta T}{T} = \frac{2kT_e}{m_e c^2} \sigma_T N_e L$$

$$\sigma_T = \frac{8\pi}{3} (\frac{e^2}{m_e c^2})^2 = 6.65 \ 10^{-25} cm^{-2}$$

$$= 2.24 \ 10^{-34} T_e N_e L$$

- Sunyaev-Zel'dovich effect
 - thermal SZ effect
 - kinetic SZ effect

- Observational concerns, e.g.
 - contamination from various foreground sources such as extragalactic synchrotron (low freq.), galactic f-f (low freq.), thermal dust(high freq)

- Sunyaev-Zel'dovich effect
 - pros and cons
 - extended low surface brightness
 - sensitive to massive objects, i.e. clusters of galaxies
 - independent of red-shifts

- bias toward massive objects but unbiased to z (distance)
- SCIENCE!
 - (with X-ray data) an independent measure of H_0 from other

by using standard candles

• structure formation through (unbiased) cluster survey

finite distance relation is product for three different cosmologies, assuming $\Pi_0 \equiv 60 \text{ km s}^{-1} \text{ Mpc}^{-1}$. $\Omega_M = 0.3$, $\Omega_{\Lambda} = 0.7$ (solid line), $\Omega_M = 0.3$, $\Omega_{\Lambda} = 0$ (dashed line), and $\Omega_M = 1.0$, $\Omega_{\Lambda} = 0$ (dot-dashed line). The clusters are beginning to trace out the angular diameter distance relation. References: (1) Reese et al. 2002; (2) Pointecouteau et al. 2001; (3) Mauskopf et al. 2000; (4) Reese et al. 2000; (5) Patel et al. 2000; (6) Grainge et al. 2000; (7) Saunders et al. 2000; (8) Andreani et al. 1999; (9) Komatsu

The Search for ExtraTerrestrial Intelligence, SETI

- Brief early history
 - 1959 Cocconi and Morrison : the potential of using microwave radio for communicating between the stars
 - 1960 Drake started using the 85-foot West Virginia antenna at NRAO in searching toward two nearby stars suggested by the agove authors
 - 1960's Soviet Union
 - 1971 NASA Ames with concept study Project Cyclops
 - late 1970's NASA Ames (targeted search) and JPL (all sky survey)
 - 1988 NASA SETI funded
 - 1992 NASA SETI began
 - 1993 -NASA SETI terminated
- Approach
 - best penetration radio
 - channel with low background 1.4-1.62 GHz
 - signal type -
 - broadband leakage
 - narrow band targeted

The Search for ExtraTerrestrial Intelligence, SETI

- Ongoing projects
 - SETI Institute
 - Project Phoenix
 - Optical SETI
 - ATA
 - Ohio State Big Ear
 - SERENDIP
 - Southern SERENDIP
 - SETI Italia
 - Project BAMBI
 - Optical SETI at
 - Columbus
 - Berkeley
 - Harvard
 - SETI@Home

The Search for ExtraTerrestrial Intelligence, SETI

- The Drake equation
 - presented by Frank Drake in 1961
 - $N = R_* f_p n_e f_l f_i f_c L$
 - N:The number of civilizations in the Milky Way whose electromagnetic emissions are detectable
 - R_* : the rate of formation of stars suitable for the development of intelligent life
 - f_{D} : the fraction of those stars with planetary systems
 - n_{ρ} : the number of planets, per solar system, with an environment suitable for life
 - f₁: the fraction of suitable planets on which life actually appears
 - f_i: the fraction of life bearing planets on which intelligent life emerges
 - f_c: the fraction of civilizations that develop a technology that releases detectable signs of their existence into apace
 - L: the length of time such civilizations release detectable signals into space

Radio Astronomy -Modern Telescopes

- Better FE (Receivers and Amplifiers) and BE (correlators), Combined Telescopes
 - e.g. eVLA, eVLBI, CARMA (BIMA+OVRO), SMA-JCMT-CSO
 - receiver development
 - TeraHertz, high frequency band
 - Wideband bolometers as well as hyterodyne systems
 - focal plan arrays
- Bigger dishes mechanically challenging
 - e.g. LMT
- More Dishes electronically challenging
 - e.g. ATA, ALMA, SKA
- Better Sites
 - RFI- radio frequency interference
 - More space missions?

Final Remarks

- What you should have learned by now
- technical side
 - luminosity, flux, flux density, intensity, temperature
- science side
 - characteristic signatures of different known emission mechanism
 - what radio observations can and may offer to tackle astrophysical (and astrochemical/"astrobiological") problems
- What we did not have a chance to talk about
 - many, but to name a few
 - technical side
 - FE/BE in general
 - non-LTE line excitation
 - science side
 - solar system (e.g. the Sun, asteroids)
 - stellar radio astronomy (e.g. flare stars, ionized stellar wind, novae, pulsars...)
 - molecular contents/chemistry in clouds