
Radio Astronomy -
Polarized Radiation

E=E0e−iωt

=(x̂E1+ ŷE2)e−iωt

(
Ex′

A0 cosβ
)2+(

Ey′

A0 sinβ
)2 = 1

E1 = A1eiφ1 and E2 = A2eiφ2

Ex = A1cos(ωt−φ1) and Ey = A2cos(ωt−φ2)

Ex′ = A0 cosβ cosωt and Ey′ =−A0 sinβ sinωt
−π/2≤ β ≤ π/2

• Polarization (monochromatic wave case)

• consider at an arbitrary position (r=0)

• draw figure
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• Polarization and Stokes parameters (monochromatic wave 
case)

Ex=A0(cosβ cosχ cosωt+ sinβ sinχ sinωt)
Ey=A0(cosβ sinχ cosωt− sinβ cosχ sinωt)

I≡A21+A22 = A20
Q≡A21−A22 = A20 cos2β cos2χ
U≡2A1A2cos(φ1−φ2) = A20 cos2β sin2χ
V≡2A1A2sin(φ1−φ2) = A20 sin2β

A0=
√
I

sin 2β=
V
I

tan 2χ=
U
Q

A1 cosφ1=A0 cosβ cosχ
A1 sinφ1=A0 sinβ sinχ
A2 cosφ2=A0 cosβ sinχ
A2 sinφ2=−A0 sinβ cosχ

I2 = Q2+U2+V 2
2

Radio Astronomy -
Polarized Radiation



• Polarization

• polarization measurement

• Linear feeds or Circular feeds

S0=I = S
S1=Q= 0
S2=U = 0
S3=V = S

S0=I = S
S1=Q= 0
S2=U = 0
S3=V =−S

Linear Polarization
Circular Polarization

right-handed (RCP) left-handed (LCP)
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S0 = I = E2
= S

S1 = Q = Icos 2χ

S2 = U = Isin 2χ

S3 = V = 0
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• Measuring magnetic fields - molecular line polarization

• molecular line

• Zeeman effect

• Circular polarization

• Zeeman, Lorentz (1902 Nobel prize)

• line splitting

• “strength” of B-field “along” the line of sight
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Zeeman effect

• Splitting of spectral lines into multiple components due to the coupling 
of an atom‘s or molecule‘s magnetic moment with an external 
magnetic field. σ+ and σ- has signals with different circular 
polarization. Different g factor for different  molecules and transition.

• Suitable atoms or molecules are HI, OH, H2O, CSS, CN, SO etc.

• Most successful detection cases of Zeeman measurement are with HI, 
OH and H2O. 

              

SO(10-01)

Coutercy of Dr. C.C. Chiong
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Zeeman effect

• If the splitting is large (RCP, LCP well separated), the total field strength 
can be derived (only OH and H2O maser).

• If the splitting is small, it provides only the „line-of-sight“ component 
Blos.
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Coutercy of Dr. C.C. Chiong
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Zeeman effect

Crutcher and Troland  2000 ApJL

B(l.o.s.) ~ 10 micro Gauss
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Coutercy of Dr. C.C. Chiong
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Current Status
• Bear in mind first that In most cases, only line-of-sight or plane-of-sky 
component is measured.
• Observational data supporting the existing star formation theories are still 
rare, because it is hard to measure the strength of interstellar magnetic 
fields.

Theories :
The B-ρ relation: |B| ∝ ρκ, 
κ = 1/2 to 1/3 (Mouschovias, 1985)
Observations :
Crutcher (1999) reviewed 15 detections and 3 

upper limits towards the dense region. 
   

   Blos ∝ ρ0.47±0.08
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• dust  

• continuum emission - modified blackbody radiation due 
to the wavelength dependence of dust grain emissivity.

9

τdust ∝ νβ with β ∼ 1 − 2
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• Measuring magnetic fields - dust continuum polarization

• dust  

• continuum (emission/absorption; NOT scattered)

• Linear polarization

• due to alignment (see next page)

• grain particles with magnetic moment (due to 
spinning) precess  around the B-field

• polarization provides the “direction” of B-field 
(perpendicular or parallel) “in” the plane of the 
sky

• detail mechanism not secure

• various competing processes including collision 
(temperature/density)
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• Dust continuum polarization mechanism

• dust grain alignment (Lazarian, Goodman, Myers 1997, ApJ)
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Hour glass shape of the magnetic field structure in the circumbinary envelope

The large scale field is well aligned with the minor axis and the mass-to-flux ratio is 
slightly over critical

BEST OBSERVATIONAL CASE SO FAR!!!

Girart, Rao, & Marrone 2006

Polarization B-field
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Radio Astronomy -
The Radio Sky
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• Microwave Sky
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• CMB

• topics

• anisotropy (power spectrum)

• polarization

• SZ Effect

• experiments (e.g. http://cfa-www.harvard.edu/~mwhite/cmbexptlist.html)

Radio Astronomy -
CMB

experiment type freq(GHz) Scale(l)

COBE space 30-90 2-30

Boomerang balloon 90-420 10-700

MAXIMA balloon 150-420 50-700

CBI ground 26-36 300-3000

DASI ground 26-36 125-700

WMAP space 22-90 2-1000

AMiBA ground 70-90(?) SZ

SZA ground 30-90 SZ

Plank space 30-850 2-2000
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• CMB experiments

• space satellites 

COBE

WMAP
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• CMB experiments 

COBE WMAP
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• CMB experiments

• balloons

MAXIMA

Boomerang
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• CMB experiments

• ground

DASI

CBI

SZA
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• References

• Birkinshaw 1999, Physics Reports
“The Sunyaev-Zel’dovich Effect”

• Carlstrom 2002, ARA&A, 40, 643
“Cosmology with the Sunyaev-Zel’dovich Effect”

• Thomson scattering

• photon scattering off electrons at rest

•                    in electron’s rest framehv! mec2

ε=ε1
dσT
dΩ

=
1
2
r20(1+ cos2θ)

σT=
8π
3
r20
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• References

• Birkinshaw 1999, Physics Reports
“The Sunyaev-Zel’dovich Effect”

• Carlstrom 2002, ARA&A, 40, 643
“Cosmology with the Sunyaev-Zel’dovich Effect”

• Inverse Compton Scattering

• photon scattering off electrons in motion

•                   in electron’s rest frame still

ε1 =
ε

1+ ε
mc2(1− cosθ)

hv! mec2
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• Inverse Compton Scattering

• with relativistic electrons 
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• Sunyaev-Zel’dovich effect

• Sunyaev & Zel’dovich (1970)

• CMB photons interact with 

108K plasma in clusters, 
typically extend on the Mpc 
scale (angular size of several 
arcmins)

• no confirmed results until 
late 1990’s 

ΔT
T

=
2kTe
mec2

σT Ne L

σT =
8π
3

(
e2

mec2
)2 = 6.65 10−25cm−2

=2.24 10−34 Te Ne L

218 GHz

162 GHz
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• Sunyaev-Zel’dovich effect

• thermal SZ effect

• kinetic SZ effect

• Observational concerns, e.g.

• contamination from various foreground sources such as 
extragalactic synchrotron (low freq.), galactic f-f (low freq.), 
thermal dust(high freq)
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• Sunyaev-Zel’dovich effect

• pros and cons

• extended low surface brightness

• sensitive to massive objects, i.e. clusters of galaxies

• independent of red-shifts

• bias toward massive objects but unbiased to z (distance)

• SCIENCE!

• (with X-ray data) an independent measure of H0 from other 

by using standard candles

• structure formation through (unbiased) cluster survey
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• Sunyaev-Zel’dovich effect
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• Brief early history

• 1959 - Cocconi and Morrison : the potential of using microwave radio for 
communicating between the stars 

• 1960 - Drake started using the 85-foot West Virginia antenna at NRAO in 
searching toward two nearby stars suggested by the agove authors

• 1960’s - Soviet Union

• 1971 - NASA Ames with concept study Project Cyclops

• late 1970’s - NASA Ames (targeted search) and JPL (all sky survey)

• 1988 - NASA SETI funded

• 1992 - NASA SETI began

• 1993 -NASA SETI terminated

• Approach

• best penetration - radio

• channel with low background - 1.4-1.62 GHz

• signal type - 

• broadband leakage

• narrow band targeted 

The Search for ExtraTerrestrial Intelligence, SETI
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• Ongoing projects

• SETI Institute

• Project Phoenix

• Optical SETI

• ATA

• Ohio State Big Ear

• SERENDIP

• Southern SERENDIP

• SETI Italia

• Project BAMBI

• Optical SETI at 

• Columbus

• Berkeley

• Harvard

• SETI@Home

The Search for ExtraTerrestrial Intelligence, SETI
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• The Drake equation

• presented by Frank Drake in 1961

• N = R* fp ne fl fi fc L

• N: The number of civilizations in the Milky Way whose electromagnetic emissions are 
detectable

• R* : the rate of formation of stars suitable for the development of intelligent life

• fp: the fraction of those stars with planetary systems

• ne: the number of planets, per solar system, with an environment suitable for life

• fl: the fraction of suitable planets on which life actually appears

• fi: the fraction of life bearing planets on which intelligent life emerges

• fc: the fraction of civilizations that develop a technology that releases detectable 

signs of their existence into apace

• L: the length of time such civilizations release detectable signals into space

The Search for ExtraTerrestrial Intelligence, SETI 
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• Better FE (Receivers and Amplifiers) and BE (correlators),  Combined 
Telescopes

• e.g. eVLA, eVLBI, CARMA (BIMA+OVRO), SMA-JCMT-CSO

• receiver development

• TeraHertz, high frequency band

• Wideband bolometers as well as hyterodyne systems

• focal plan arrays

• Bigger dishes - mechanically challenging

• e.g. LMT

• More Dishes - electronically challenging

• e.g. ATA, ALMA, SKA

• Better Sites

• RFI- radio frequency interference

• More space missions?

Radio Astronomy -
Modern Telescopes
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• What you should have learned by now

• technical side

• luminosity, flux, flux density, intensity, temperature

• science side

• characteristic signatures of different known emission mechanism

• what radio observations can and may offer to tackle astrophysical (and 
astrochemical/”astrobiological”) problems

• What we did not have a chance to talk about

• many, but to name a few

• technical side

• FE/BE in general

• non-LTE line excitation

• science side

• solar system (e.g. the Sun, asteroids)

• stellar radio astronomy (e.g. flare stars, ionized stellar wind, novae, 
pulsars...)

• molecular contents/chemistry in clouds

Final Remarks
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