NOTES OF 11 AVRIL 2018 : INTRODUCTION TO PERVERSE SHEAVES

HIRONORI OYA

1. Aim

The aim is to explain the definition of $\operatorname{Perv}(X) \subseteq \operatorname{D}_{c}^{b}(X, \overline{\mathbf{Q}}_{\ell})$. Here $\operatorname{Perv}(X)$ is an abelian subcategory of the triangulated category $D_c^b(X, \overline{\mathbf{Q}}_{\ell})$. For a quasi-projective scheme over a finite or an algebraically closed field.

Why perverse sheaves?

- 1. The intersection cohomology provides for singular schemes a cohomology theory which satisfies the Poincaré duality.
- 2. The Riemann–Hilbert correspondence expresses in terms of perverse sheaves.

2. t-structure

Définition 2.1. — Let D be a triangulated category. A pair $(D^{\geq 0}, D^{\leq 0})$ is called a t-structure of D if $D^{\geq 0}, D^{\leq 0}$ are full subcategories of D (we write then $D^{\leq n} = D^{\leq 0}[-n]$) and the following conditions are satisfied

- 1. Hom $\left(D^{\leq 0}, D^{\geq 1}\right) = 0$ 2. $D^{\leq 0} \subseteq D^{\leq 1}, D^{\geq 1} \subseteq D^{\geq 0}$
- 3. For all $E \in D$, there exists a distinguished triangle in D

$$A \xrightarrow{u} E \xrightarrow{v} \to A[1]$$

such that $A \in D^{\leq 0}$ and $B \in D^{\geq 1}$.

Exemple 2.2. — If \mathscr{A} is an abelian category with derived category $D = D(\mathscr{A})$, then

$$\begin{aligned} D^{\leq 0} &= \left\{ X \in D \; ; \; \mathrm{H}^{i}(X) = 0, \; \forall i > 0 \right\} \subseteq D \\ D^{\geq 0} &= \left\{ X \in D \; ; \; \mathrm{H}^{i}(X) = 0, \; \forall i < 0 \right\} \subseteq D \end{aligned}$$

is a t-structure, which is called **standard t-structure**. For the condition 3, given any object $E \in D$, we let

$$A = \tau_{\leq 0}E = \dots \to E^{-1} \to E^0 \to \operatorname{im} d^0 \to \dots,$$
$$B = \tau_{\leq 0}E = \dots \to 0 \to \ker d^0 \to E^1 \to \dots.$$

The pairs (A, u) and (B, u) are unique up to unique isomorphism (because for any object $W \in D^{\leq 0}$ we have $\operatorname{Hom}(W, A) \cong \operatorname{Hom}(W, E)$). We shall write it as

$$\tau_{\leq 0}E \to E \to \tau_{\geq 1}E \xrightarrow{+1}$$

2.3. heart. —

Théorème 2.4. — The subcategory Core $(D) = D^{\leq 0} \cap D^{\geq 0}$, called the **core** or the **heart** of D is an abelian category with the following ker and coker : for $f : X \to Y$ we take a distinguished triangle $X \xrightarrow{f} Y \to Z \to X[1]$ and we have ker $f = \tau_{\leq 0} (Z[-1])$ and coker $f = \tau_{\geq 0} Z$.

Démonstration. — See Kiehls-Weissauer or Hotta-Takeuchi-Tanisaki.

Proposition 2.5. — For $X, Y, Z \in \text{Core}(D)$, a sequence $0 \to X \to Y \to Z \to 0$ is exact in Core(D) if and only if there is a morphism $Z \to X[1]$ in D which completes it into a distinguished triangle $X \to Y \to Z \xrightarrow{+1}$.

2.6. Cohomology functor. — Define $\mathrm{H}^0 : D \to \mathrm{Core}(D)$ as $\mathrm{H}^0 = \tau_{\geq 0}\tau_{\leq 0} \cong \tau_{\leq 0}\tau_{\geq 0}$. We denote $\mathrm{H}^n = \mathrm{H}^0 \circ [-n]$ for $n \in \mathbb{Z}$.

Given a distinguished triangle $X \to Y \to Z \to X[1]$ we have a long exact sequence

$$\dots \to \operatorname{H}^{-1}(Z) \to \operatorname{H}^{0}(X) \to \operatorname{H}^{0}(Y) \to \operatorname{H}^{0}(Z) \to \operatorname{H}^{1}(Z) \to \dots$$

3. The derived category $D_c^b(X, \overline{\mathbf{Q}}_{\ell})$

Let X be a quasi-projective scheme over a finite or algebraically closed field. There is a triangulated category $D_C^b(X, \overline{\mathbf{Q}}_{\ell})$ with the following properties :

1. there is a "standard" t-structure $(D^{\leq 0}, D^{\geq 0})$ such that

$$\operatorname{Core}^{\operatorname{std}}\left(\operatorname{D}_{c}^{b}\left(X,\overline{\mathbf{Q}}_{\ell}\right)\right)\xrightarrow{\cong}\left\{\overline{\mathbf{Q}}_{\ell}-\operatorname{sheaves}\right\}$$

2.

$$\mathbf{D}_{c}^{b}\left(X,\overline{\mathbf{Q}}_{\ell}\right) = \varinjlim_{\mathbf{Q}_{\ell} \subseteq E} \varprojlim_{r} \mathbf{D}_{\mathrm{ctf}}^{b}\left(X,\mathcal{O}_{E}/\pi^{r}\mathcal{O}_{E}\right) \otimes E$$

3. We can define $f_*, f^*, f_!, f^!, \mathcal{H}$ om and \otimes for $f : X \to Y$. When f is smooth and equidimensional of dimension d, then $f^! = f^*[2d](d)$. When f is proper, we have $f_! = f_*$.

3.1. Dualizing functor \mathbf{D}_X . — Let $\varphi : X \to S = \operatorname{Spec}(k)$. The object $\omega_X = \varphi' \overline{\mathbf{Q}}_{\ell,S}$ is called the dualising complex and $\mathbf{D}_X = \mathcal{H}om(-,\omega_X)$ is called the dualising functor.

It has the following properties :

1.

$$[1] \circ \mathbf{D}_X = \mathbf{D}_X \circ [-1]$$

2. Let $f: X \to Y$. Then $f_* \circ \mathbf{D}_X \cong \mathbf{D}_Y \circ f_!$. 3. $\mathrm{id}_X \cong \mathbf{D}_X \circ \mathbf{D}_X$.

4. Perverse sheaves

 $\begin{array}{ll} \textit{Théorème 4.1.} & - & Defining \\ & {}^{p}D^{\leq 0} = \left\{ B \in \mathrm{D}^{b}_{c}\left(X, \overline{\mathbf{Q}}_{\ell}\right) \; ; \; \dim \mathrm{supp} \; \mathcal{H}^{-i}B \leq i, \; \forall i \in \mathbf{Z} \right\} \\ & {}^{p}D^{\geq 0} = \left\{ B \in \mathrm{D}^{b}_{c}\left(X, \overline{\mathbf{Q}}_{\ell}\right) \; ; \; \dim \mathrm{supp} \; \mathcal{H}^{-i}\mathbf{D}_{X}B \leq i, \; \forall i \in \mathbf{Z} \right\} \end{array}$

Then it is a t-structure.

We define the category of **perverse sheaves** $\operatorname{Perv}(X) = {}^{p}D^{\leq 0} \cap {}^{p}D^{\geq 0}$ as the core of this t-structure.

Hironori Oya