NOTES OF 14 MARCH 2018 : D-MODULES

Élie Casbi

1. Setting

Let X be smooth algebraic variety over $k = \mathbf{C}$. Let \mathcal{O}_X be the structure sheaf (algebraic or holomorphic) of X, Ω_X^i the sheaf of differential *i*-forms of X and Θ_X the sheaf of vector fields on X.

For all $x \in X$, the fiber of Θ_X at x is the tangent space $T_x X$.

Remarque 1.1. — We have $\Theta_X = \mathcal{H}om_{\mathcal{O}_X}(\Omega^1_X, \mathcal{O}_X).$

We have an embedding $\Theta_X = \mathcal{E}nd_{\mathbf{C}}(\mathcal{O}_X)$, in terms of Lie derivatives : for ξ a vector field

 $L_{\xi}f = (x \mapsto df_x(\xi(x)))$

Via the Lie derivatives, vector fields also act on differential forms.

i

2. \mathcal{D} -modules

Définition 2.1. — Let \mathcal{D}_X be the sub-C-algebra generated by Θ_X and Θ_X inside $\mathcal{E}nd_{\mathbf{C}}(\mathcal{O}_X)$.

If we have a local coordinate chart (x_1, \dots, x_n) , then any section of \mathcal{D}_X is locally written as

$$\sum_{1,\dots,i_n\geq 0} a_{i_1,\dots,i_n} \partial_1^{i_1} \cdots \partial_n^{i_n}$$

We define

$$\mathcal{M}_l(\mathcal{D}_X)$$
 = category of left \mathcal{D}_X -modules
 $\mathcal{M}_r(\mathcal{D}_X)$ = category of right \mathcal{D}_X -modules.

Elements of \mathcal{D}_X can be thought of as functions on T^*X . The sheaf of ring \mathcal{D}_X has a filtration $\mathcal{D}^0 \subseteq \mathcal{D}^1 \subseteq \mathcal{D}^2 \subseteq \cdots$ with

 $\mathcal{D}^0 = \mathcal{O}_X, \quad \mathcal{D}^1 = \mathcal{O}_X \oplus \Theta_X, \quad \mathcal{D}^i \mathcal{D}^j \subseteq \mathcal{D}^{i+j}$

Let $\operatorname{gr} \mathcal{D}_X$ be the graded ring. We have $\operatorname{gr} \mathcal{D}_X \cong \operatorname{S}(\Theta_x) \hookrightarrow \mathcal{O}_{T^*X}$.

ÉLIE CASBI

3. Functorialities

We define the functors of pull-back and push-forward of \mathcal{D}_X -modules.

Let $f: X \to Y$ be an embedding of smooth varieties. There are functors

$$\mathcal{M}_l(\mathcal{D}_X) \ni f^*N \longleftarrow N \in \mathcal{M}_l(\mathcal{D}_Y)$$

$$\mathcal{M}_l(\mathcal{D}_X) \ni M \longmapsto f_*M \in \mathcal{M}_l(\mathcal{D}_Y)$$

We have the usual pull-back of sheaves $f^{-1}N$. How to upgrade it to a \mathcal{D}_X -module?

In the case of $\mathcal O\text{-modules},$ we put

$$f^*N = O_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}N$$

To define the action of Θ_X , consider

$$\widetilde{f}: TX \to X \times TY$$
$$v \mapsto (v, df_x(v))$$

Let $\xi \in \Theta_X$. To express the push-forward of ξ along \tilde{f} , we choose a coordinate system $\{y_i\}$ so that $\xi = \sum_i a(x) \otimes \partial_{y_i}$. It is then natural to define

$$\mathcal{D}_{X \to Y} = \mathcal{O}_X \otimes_{f^{-1} \mathcal{O}_Y} f^{-1} \mathcal{D}_Y$$

Then we can define the pull-back of \mathcal{D} -modules

$$f^*N = \mathcal{D}_{X \to Y} \otimes_{f^{-1}\mathcal{D}_Y} f^{-1}N$$

The push-forward is more complicated. We shall first talk about the local construction.

Let $i: X \hookrightarrow Y$ be an embedding. We can choose coordinates on Y, say (y_1, \dots, y_m) in such a way that $X = \{y_{n+1} = \dots = y_m = 0\}$.

For any right \mathcal{D}_X -module M, we let

$$i_*M = \bigoplus_{\alpha_{n+1}, \dots, \alpha_m} M \partial_{n+1}^{\alpha_{n+1}} \cdots \partial_m^{\alpha_m}.$$

We define in general for any right \mathcal{D}_X -module M the direct image

$$\mathcal{D}_{f_*}M = \mathcal{O}_{f_*}M \otimes_{f_*\mathcal{D}_X} \mathcal{D}_Y,$$

which is a right \mathcal{D}_Y -module.

The push-forward for left modules are more complicated, but in the local chart, we have

$$i_*M = \bigoplus_{\alpha_{n+1}, \dots, \alpha_m} \partial_{n+1}^{\alpha_{n+1}} \cdots \partial_m^{\alpha_m} M$$

For example, consider the embedding $\{0\} \hookrightarrow \mathbf{A}^1$. Then $\Gamma(\mathbf{A}^1, \mathcal{D}_{\mathbf{A}^1}) = \mathbf{C}\langle x, \partial \rangle / ([\partial, x] = 1)$. We have

$$i_*\mathbf{C} = \mathcal{D}_{\mathbf{A}^1}/(x) = i_*\mathbf{C} = \bigoplus_{i\geq 0} \partial^i \mathbf{C} = \bigoplus_{i\geq 0} \mathbf{C} v_i$$

with the action of $\mathcal{D}_{\mathbf{A}^1}$ defined by

$$xv_0 = 0, \quad \partial v_i = v_{i+1}, \quad xv_i = -iv_{i-1},$$

4. Theorem of Kashiwara

Let $Z \subseteq Y$ be a closed subvariety of Y. We denote I_Z the defining ideal. We define $\mathcal{M}_Z(Y) \subseteq \mathcal{M}_l(Y)$

be the full subcategory of left \mathcal{D}_Y -modules M on which I_Z acts nilpotently.

Théorème 4.1 (Kashiwara). — Let $X \hookrightarrow Y$ be a closed embedding of smooth varieties. Then i_* induces an equivalence of category

$$i_*: \mathcal{M}(X) \xrightarrow{\cong} \mathcal{M}_X(Y).$$

5. More general definition of push-forwards

Let us recall the derived categories.

Consider the de Rham complex

$$0 \to \mathcal{O}_X \to \Omega^1_X \to \ldots \to \Omega^{d_X}_X \to 0$$

We define for any $M \in \mathcal{M}(X)$,

$$\mathrm{DR}_X(M) = 0 \to \Omega^0_X \otimes_{\mathcal{O}_X} M \to \Omega^1_X \otimes_{\mathcal{O}_X} M \to \ldots \to \Omega^{d_X}_X \otimes_{\mathcal{O}_X} M \to 0,$$

with the differential

$$\nabla : M \to \Omega^1_X \otimes_{\mathcal{O}_X} M$$
$$m \mapsto \sum_i dx_i \otimes \partial_i M$$

In particular, $DR_X(\mathcal{D}_X)$ is

$$0 \to \Omega^0_X \otimes_{\mathcal{O}_X} \mathcal{D}_X \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{D}_X \to \ldots \to \Omega^{d_X}_X \otimes_{\mathcal{O}_X} \mathcal{D}_X \to 0$$

which is a locally free resolution of $\Omega_X^{d_X}$.

Thus

$$DR_X(M) = DR_X(\mathcal{D}_X) \otimes_{\mathcal{D}_X} M$$

represent the derived tensor product $\Omega_X \otimes_{\mathcal{D}_X}^{\mathbf{L}} M$ in the derived category $D^+(\mathcal{M}(X))$ thus we may define

 $f_*M = \Omega_Y^{\otimes -1} \otimes_{\mathcal{O}_Y}^{\mathbb{L}} \mathrm{R}f_*\left(\left(\Omega_X \otimes_{\mathcal{O}_X}^{\mathbb{L}} M\right) \otimes_{\mathcal{D}_X} \mathcal{D}_{X \to Y}\right).$

7 mars 2018

Élie Casbi