NOTES OF 16 MAI 2018 : EQUIVARIANT TWISTED \mathcal{D} -MODULES AND ADMISSIBLE ORBITS

Élie Casbi

1. general setting

Let G be an abelian group, H a torus with an action $\kappa : G \to \operatorname{Aut}(H)$, X be a smooth G-variety and $\widetilde{X} \to X$ be a G-equivariant H-torsor.

We assume that the action of G on X has only a finite number of orbits. We write $X = \bigsqcup_{i \in I} Q_i$, the decomposition into orbits. For $i_1, i_2 \in I$, we denote $i_1 \leq i_2$ if $Q_{i_1} \subseteq \overline{Q}_{i_2}$. We say a subset $J \subseteq I$ is **closed** if $j \in J$ and $j' \leq j$ implies $j' \in J$. For each $i \in I$, we denote $i = \{j \in I ; j \leq i\} \subseteq I$ the **closure** of i.

Recall that we have the classifiation of simple G-equivariant monodromic \mathcal{D} -modules on X.

2. flag variety

We take X as flag variety G/B, on which N = Rad(B) acts by left multiplication, and $\widetilde{X} = G/N$ being N-equivariant H = B/N-torsor over X. We shall study the N-equivariant H-monodromic \mathcal{D} -modules on X. Let W be the Weyl group.

We fix an anti-dominant regular weight $\lambda \in \mathfrak{h}^*$. The Beilinson–Bernstein localisation theorem implies that

Théorème 2.1. — Mod $(U(\mathfrak{g}), N)_{\lambda} \cong Mod (\widetilde{\mathcal{D}}_X, N)_{\lambda}$ is W-stratified.

3. Admissible orbits

Let K be an algebraic group with a morphism $K \to G$. Let $x \in X$ be a point and let $K_x = \operatorname{Stab}_K(x)$. Choose any $\widetilde{x} \in \widetilde{X}$ which lifts x. Then $K_x^0 \subseteq K_x$ is a normal subgroup and that $K_{(x)} = K_x/K_{\widetilde{x}}^0$ doesn't depends on the choice of \widetilde{x} . The Lie algebra $\mathfrak{k}_{(x)}$ is naturally embedded into \mathfrak{h} .

Définition 3.1. — For $x \in X$, we define

 $\mathfrak{h}^{*}(x) = \left\{ \varphi \in \mathfrak{h}^{*} ; \, \kappa(K(x))\varphi = \varphi, \, \varphi \mid_{\mathfrak{k}(x)} = 0 \right\}$

The subset $\mathfrak{h}^*(x)$ depends only on the orbit Q = Kx. We shall denote $\mathfrak{h}^*(Q) = \mathfrak{h}^*(x)$. We define $\mathfrak{h}^*_{\mathbf{Z}}(Q) = \mathfrak{h}^*(Q) \cap \mathbf{X}^*(H)$.

Lemme 3.2. — For $\varphi \in \mathfrak{h}_{\mathbf{Z}}^*$. Then $\varphi \in \varphi \in \mathfrak{h}_{\mathbf{Z}}^*(Q)$ if and only if there exits a K-invariant regular function $f_{\varphi} \neq 0$ on $\widetilde{Q} = \pi^{-1}(Q)$ such that for all $\widetilde{x} \in \widetilde{Q}$,

$$f_{\varphi}(h\widetilde{x}) = (\exp\varphi)(h)f_{\varphi}(\widetilde{x}).$$

Définition 3.3. — The function f_{φ} is called \widetilde{Q} -positive if $f_{\varphi} \in \mathcal{O}\left(\overline{\widetilde{Q}}\right)$ and $f_{\varphi}^{-1}(0) = \overline{\widetilde{Q}} \times \widetilde{Q}$ (i.e. f_{φ} extends holomorphically by zero to the closure.)

Définition 3.4. — The orbit Q is called **admissible** if there exits $\varphi \in \mathfrak{h}^*_{\mathbf{Z}}(Q)$ such that f_{φ} is \overline{Q} -positive. We denote $\mathfrak{h}^{*+}_{\mathbf{Z}}(Q)$ the subset of $\mathfrak{h}^*_{\mathbf{Z}}(Q)$ consisting of \overline{Q} -positive weights.

Now consider the action of N on X = G/B by left multiplication. Then $X = \bigsqcup_{w \in W} Q_w$ with $Q_w = NwB$ being the Schubert cells.

Proposition 3.5. — For all $w \in W$, the orbit Q_w is admissible.

Démonstration. — Since $\rho + \mathfrak{h}^{*+} \subseteq \mathfrak{h}^{*+}(Q_w)$, the latter is nonempty.

Take any $\chi \in \rho + \mathfrak{h}^{*+}$, the irreducible *G*-module $L(\chi)$ has a lowest weight vector $v \in V$. Consider the morphism

 $G \to V$ $q \mapsto qv,$

which induces $q_v : \widetilde{X} = G/N \to V$. Let $\dot{w} \in N_G(T)$ be a lifting of w. We choose a linear functional $l \in V^*$ such that $l(\dot{w}v) \neq 0$ and that $l(n\dot{w}v) = 0$ for any $n \in \text{Lie } N$.

Then we put
$$f = \ell \circ q_v$$
, so that $f\left(\overline{\widetilde{Q}} \setminus \widetilde{Q}\right) = 0$ and $f\left(\widetilde{Q}\right) \neq 0$.

4. nearby cycles

We have the following diagram of two cartesian squares

.

Recall that we have defined for each $a \in \mathbf{N}$ a functor $\pi_f^a : \operatorname{Mod}(\mathcal{D}_U) \to \operatorname{Mod}(\mathcal{D}_Y)$, that we denoted $\pi_f^0 = \Psi_f^{\operatorname{uni}}, \pi_f^1 = \Xi_f$ and there are exact sequences

$$\begin{array}{l} 0 \rightarrow j_! \rightarrow \Xi_f \xrightarrow{s} \rightarrow \Psi_f^{\mathrm{uni}} \rightarrow 0 \\ 0 \rightarrow \Psi_f^{\mathrm{uni}} \rightarrow \Xi_f \rightarrow j_* \rightarrow 0 \end{array}$$

We consider the composite $s: \Xi_f \to \Psi_f^{\text{uni}} \to \Xi_f$.

Élie Casbi
