NOTES OF 18 AVRIL 2018 : PERVERSE SHEAVES–DECOMPOSITION THEOREM

HIRONORI OYA

1. Perverse sheaves

Let X be a quasi-projective scheme over a field k. Recall that

$${}^{p} \mathbf{D}^{\leq 0}(X) = \left\{ B \in \mathbf{D}_{c}^{b}\left(X, \overline{\mathbf{Q}}_{\ell}\right) ; \operatorname{dim} \operatorname{supp} \mathcal{H}^{-1} B \leq i, \forall i \in \mathbf{Z} \right\}$$
$${}^{p} \mathbf{D}^{\geq 0}(X) = \left\{ B \in \mathbf{D}_{c}^{b}\left(X, \overline{\mathbf{Q}}_{\ell}\right) ; \operatorname{dim} \operatorname{supp} \mathcal{H}^{-1} \mathbf{D}_{X} B \leq i, \forall i \in \mathbf{Z} \right\}$$

is a t-structure and that $\operatorname{Perv}(X, \overline{\mathbf{Q}}_{\ell}) = {}^{p} \mathrm{D}^{\leq 0}(X) \cap {}^{p} \mathrm{D}^{\geq 0}(X)$ is defined to be the category of perverse sheaves on X. Here $\mathbf{D}_{X} = \mathcal{H}\mathrm{om}(-, \omega_{X})$ is the dualising functor so that id $\cong \mathbf{D}_{X} \circ \mathbf{D}_{X}$ and that $f_{*} \circ \mathbf{D}_{X} \cong \mathbf{D}_{Y} \circ f_{!}$ for any $f: X \to Y$.

If $\varphi: X \to S = \text{Spec } \mathbf{k}$ denotes the projection, then $\omega_X = \varphi^! (\overline{\mathbf{Q}}_{\ell}, S)$.

Remarque 1.1. — Let \mathcal{F} be a $\overline{\mathbb{Q}}_{\ell}$ -sheaf. The support of \mathcal{E} is defined to be

 $\operatorname{supp} \mathcal{F} = \overline{\{j(\overline{x}) \in X ; j: \overline{x} \to X \text{ is a geometric point, } j^* \mathcal{F} \neq 0\}}$

A geometric point is defined to be a morphism $j: \operatorname{Spec} K \to X$ where K is a separably closed field.

The category $\operatorname{Perv}(X)$ is preserved by Verdier duality since \mathbf{D}_X exchanges ${}^{p}\mathbf{D}^{\leq 0}$ and ${}^{p}\mathbf{D}^{\geq 0}$.

Remarque 1.2. — If X is smooth and equi-dimensional, then $\omega_X = \overline{\mathbf{Q}}_{\ell}[2 \dim X](\dim X)$. More generally, if $B \in \operatorname{Perv}(X)$ is a smooth complex (local system), then the cohomological degree is concentrated on $-\dim X$.

2. Gluing

Let $j: U \hookrightarrow X$ be an open inclusion and $i: Y \hookrightarrow X$ its complement. Then

 $i_* : \operatorname{Perv}(Y) \to \operatorname{Perv}(X)$ $i^* : {}^p \mathrm{D}^{\geq 0}(X) \to {}^p \mathrm{D}^{\geq 0}(Y)$ $i^! : {}^p \mathrm{D}^{\leq 0}(X) \to {}^p \mathrm{D}^{\leq 0}(Y)$ $j^* : \operatorname{Perv}(X) \to \operatorname{Perv}(U)$ $j_* : {}^p \mathrm{D}^{\leq 0}(U) \to {}^p \mathrm{D}^{\leq 0}(X)$ $j_! : {}^p \mathrm{D}^{\geq 0}(U) \to {}^p \mathrm{D}^{\geq 0}(X)$

One can compose them with the perverse cohomology functor ${}^{p}H^{0}$ to get perverse sheaves. We denote the composites by ${}^{p}i_{*}, {}^{p}i^{*}$, etc.

Besides, there is a unique functor $j_{!*}$: Perv $(U) \rightarrow$ Perv(X), called **intermediate extension**, such that

$$j^* \circ j_{!*} \cong \mathrm{id}, \quad i^* \circ j_{!*} \cong 0, \quad i^! \circ j_{!*} \cong 0.$$

Concretely, it is decribed by image $({}^{p}j_{!} \rightarrow {}^{p}j_{*})$. It has the property that $\mathbf{D}_{X} \circ j_{!*} \cong j_{!*} \circ \mathbf{D}_{U}$. If U is smooth, then $\mathbf{D}_{X} (j_{!*} \overline{\mathbf{Q}}_{\ell}[\dim U]) \cong j_{!*} \overline{\mathbf{Q}}_{\ell}\dim U$. Thus $\overline{\mathbf{Q}}_{\ell}[\dim U]$ is self-dual up to Tate twist.

Remarque 2.1. — In representation theory, quite often a canonical basis is obtained as intermediate extension of some self-dual sheaf, which is again self-dual. This "categorifies" the bar-invariance of canonical basis. Moreover, the PBW-basis is often the ${}^{p}j_{1}$ extension.

Théorème 2.2 (classification of simple objects in Perv(X)). — Let $B \in Perv(X)$ is an object. Then B is simple if and only if there is an irreducible smooth locally open $U \xrightarrow{j \text{ open}} Y \xrightarrow{i \text{ closed}} X$ and a smooth irreducible $\overline{\mathbf{Q}}_{\ell}$ -sheaf \mathcal{F} on U and an isomorphism

$$B \cong i_* j_{!*}(\mathcal{F}[\dim U]) \eqqcolon \mathrm{IC}(\mathcal{F})$$

Remarque 2.3. — The category Perv(X) is noetherian and artinian.

3. Decomposition theorem of BBDG

Let X_0 be an separated scheme of finite type over a finite field **k**. We fix an isomorphism $\tau : \overline{\mathbf{Q}}_{\ell} \cong \mathbf{C}$.

We say that $B_0 \in D_c^b(X_0, \overline{\mathbf{Q}}_{\ell})$ is τ -mixed all its cohomology sheaves are τ -mixed. A $\overline{\mathbf{Q}}_{\ell}$ -sheaf is τ -mixed if it admits a filtration whose succesive quotient is τ -pure. A sheaf is τ -pure of weight $w \in \mathbf{R}$ if for each closed point $x \in |X_0|$, the Frobenius $F_x : \mathcal{F}_{\overline{x}} \to \mathcal{F}_{\overline{x}}$ has its eigenvalues α satisfying $|\tau(\alpha)| = \#k(x)^{w/2}$.

For any τ -mixed sheaf \mathcal{F}_0 , let

 $w(\mathcal{F}_0) = \max \{ \tau \text{-weights appearing in the successive quotients} \}.$

For any τ -mixed complex \mathcal{B}_0 , let

$$w(\mathcal{F}_0) = \max\left\{w\left(\mathcal{H}^i(B)\right) - i\right\}.$$

We say that B_0 is τ -pure of weight β if

$$w(B_0) = -w(\mathbf{D}_{X_0}(B_0)) = \beta$$

Théorème 3.1 (Decomposition theorem). — Let $B_0 \in D_c^b(X_0, \overline{\mathbf{Q}}_\ell)$ be τ -pure and let B be the base change of B_0 on $X = X_0 \otimes_k \overline{k}$. Then

$$B \cong \bigoplus_{\substack{A \in \operatorname{Perv}(X) \\ i \in \mathbf{Z}}} \sup_{simple} A[i]^{\oplus m_{A,i}}$$

Corollaire 3.2. — Let $f_0 : X_0 \to Y_0$ be a proper morphism and $U_0 \subseteq X_0$ a smooth locally closed. Then $f_* \mathrm{IC}(U, \overline{\mathbf{Q}}_{\ell})$ is τ -pure and admits a decomposition into a sum of simple perverse sheaves on $Y = Y_0 \otimes_k \overline{k}$.

Hironori Oya