NOTES OF 14 MARCH 2018 : D-MODULES : HORSING AROUND

SASHA MINETS

1. Plan

In this talk, we will talk about

- 1. \mathcal{D} -algebras
- 2. Lie algebroids
- 3. Equivariant \mathcal{D} -modules
- 4. Twisted differential operators
- 5. Monodromic \mathcal{D} -modules

2. \mathcal{D} -algebras

Recall that for a smooth variety X over $k = \mathbf{C}$ we have defined \mathcal{D}_X as the subring generated by \mathcal{O}_X and $\mathcal{T}_X = \mathcal{D}\mathrm{er}\,\mathcal{O}_X$ inside the sheaf of ring $\mathcal{E}\mathrm{nd}_{\mathbf{C}}\,\mathcal{O}_X$.

For example, for $X = \operatorname{Spec} k[x] = \mathbf{A}^1$ we have $\mathcal{D}_{\mathbf{A}^1} = k[x,\partial]/\partial x - x\partial = 1$, with deg $\partial = 1$ and deg $x = \deg 1 = 0$.

Roughly, a \mathcal{D} -algebra is a sort of \mathcal{O}_X -algebra (not actually) with a exhausting filtration $\mathcal{O} \subseteq \mathcal{D}^1 \subseteq \mathcal{D}^2 \subseteq \cdots$ such that $\forall \xi \in \mathcal{D}^i$ and $\forall f \in \mathcal{O}_X$, we have $[f, \xi] \in \mathcal{D}^{i-1}$.

Définition 2.1. — A differential bimodule over a commutative k-algebra R is a $R \otimes R$ -module M such that $M = \bigcup M_i^{\vee}$, where $M_i^{\vee} = \{m \in M; I^{i+1}m = 0\}$ and $I = \ker (R \otimes R \to R)$.

Remarque 2.2. — $I = \langle f \otimes 1 - 1 \otimes f; f \in R \rangle$.

Définition 2.3. — Forr any X, a differential bimodule over X is a quasi-coherent sheaf over $\mathcal{O}_{X \times X}$, supported at the diagonal.

For example, $X = \mathbf{A}^1$. $\Delta X \subseteq X \times X = \operatorname{Spec} \mathbf{C}[x, \xi]$ with $\Delta X = V(\xi)$. Quasi-coherent sheaves on $X \times X$ are $\mathbf{C}[x, \xi]$ -modules. Being supported on diagonal means the sheaf M is annihilated by some power of ξ .

Définition 2.4. — A \mathcal{D} -algebra on X is a sheaf of associated algebras \mathcal{A} such that \mathcal{A} is a differential bimodule. More precisely, \mathcal{A} is a quasi-coherent $\mathcal{O}_{X \times X}$ -module supported on ΔX which is equipped with a \mathcal{O}_X -linear multiplication which makes it into an associated algebra.

For example, take $M, N \in \text{Coh} X$, then $\text{Hom}_{\mathbf{C}}(M, N)$ is a \mathcal{O}_X -bimodule. If we pick out the sections supported on the diagonal, we get a differential bimodule Diff(M, N). If M = N, we denote $\mathcal{D}_M = \text{Diff}(M, M)$.

3. Lie algebroids

Let G be a semisimple algebraic group and \mathfrak{g} its Lie algebra, we have $U(\mathfrak{g})$.

If we replace groups with groupoids (stacks), then the concept of Lie algebras should become Lie algebraids and $\mathcal{U}(\mathfrak{g})$ should become \mathcal{D} -algebras.

Définition 3.1. — A Lie algebroid L on X is an \mathcal{O}_X -module equipped with an "anchor" $\sigma : L \to \mathcal{T}_X$ and a Lie bracket $[,]: L \otimes_{\mathbf{C}} L \to L$ such that

- 1. [,] is a Lie bracket and σ commutes with Lie brackets.
- 2. If $l_1, l_2 \in L$ and if $f \in \mathcal{O}_X$, then

$$[l_1, fl_2] = f[l_1, l_2] + \sigma(l_1)(f)L_2$$

Remarque 3.2. — The condition 2 should be viewed as a sort of Leibniz rule.

For example, let $f: F \to X$ be a *G*-torsor. Define $\widetilde{\mathcal{T}}_f = \{G\text{-invariant vector fields on } F$ which lift a vector field on $X\}$. There is a natural morphism $\widetilde{\mathcal{T}}_f \to \mathcal{T}_X$, forgetting the vertical tangent direction, which makes it into a Lie algebroid.

Définition 3.3. — A connection on L is an \mathcal{O}_X -module morphism $\mathcal{T}_X \xrightarrow{\nabla} L$ such that $\sigma \nabla = \mathrm{id}$. It is flat if it commutes with brackets, i.e. the curvature morphism $C(\nabla) \in \mathrm{Hom}_{\mathcal{O}_X}(\wedge^2 T_X, \ker \sigma)$ defined by

$$C(\nabla)(\tau_1 \wedge \tau_2) = [\nabla \tau_1, \nabla \tau_2] - \nabla [\tau_1, \tau_2]$$

vanishes.

Let G be acting on X. Then we have an infinitesimal action $\mathfrak{g}_X = \mathfrak{g} \otimes \mathcal{O}_X \xrightarrow{\sigma} \mathcal{T}_X$, which makes \mathfrak{g}_X a Lie algebroid. If $X \to Z$ is a G-torsor, we get an exact sequence

$$0 \to \widetilde{\mathfrak{g}}_X \to \mathcal{T}_X \to \mathcal{T}_Z \to 0$$

If we have a "groupoid action" on X (see Beilinson–Bernstein for details) , then we get a Lie algebroid on X.

Let \mathcal{A} be a \mathcal{D} -algebra with $i: \mathcal{O}_X \to \mathcal{A}$. We view \mathcal{A} as left \mathcal{O}_X by left multiplication through i. Then Lie $\mathcal{A} = \{(\tau, a) \in \mathcal{T}_X \times \mathcal{A}; i\tau(f) - i(f)a\}$. There is a canonical morphism Lie $\mathcal{A} \xrightarrow{\sigma} \mathcal{T}_X$ which takes the tangent component. The functor $\mathcal{A} \mapsto \text{Lie } \mathcal{A}$ admits a left adjoint \mathcal{U} : (Lie algebroids) $\to (\mathcal{D}$ -algebras). The \mathcal{D} -algebra $\mathcal{U}(L)$ is the "smallest" algebra with the following data

- 1. morphisms $i: \mathcal{O}_X \to \mathcal{U}(L)$ and $i_L: L \to \mathcal{U}(L)$ of let \mathcal{O}_X -modules.
- 2. satisfying

$$i_L(fl) = i(f)i_L(l)$$

and

$$[i_L(l), i(f)] = i(\sigma(l)) f$$

4. Twisted differential operators

Idea : \mathcal{D}_X is generated by \mathcal{O}_X and \mathcal{T}_X inside $\mathcal{E}nd_{\mathbf{C}}(\mathcal{O}_X)$. Twisted differential operators (tdo) will be something generated by \mathcal{O}_X and \mathcal{T}_X , with some slightly different relations between them.

Définition 4.1. — A tdo is a \mathcal{D} -algebra \mathcal{A} (with filtration $\mathcal{A}_0 \subseteq \mathcal{A}_i \subseteq \cdots$) such that

1. $\mathcal{O}_X \to \mathcal{A}_0$ is an isomorphism

2. $\sigma: \mathcal{A}_1/\mathcal{A}_0 \to \mathcal{D}\mathrm{er}\,\mathcal{A}_0 = \mathcal{T}_X$ defined by $\sigma(\partial)(f) = \partial f - f\partial$ is an isomorphism.

Remarque 4.2. — Under these conditions, we have $\operatorname{gr} \mathcal{A} \cong \operatorname{Sym} \mathcal{T}_X$.

 \mathcal{U}

Définition 4.3. — A Picard (Lie) algebroid is a Lie algebroid $\widetilde{\mathcal{T}}$ equipped with a section

$$\mathcal{O}_X \to \widetilde{\mathcal{T}}^0 := \ker \sigma.$$

such that

$$0 \to \mathcal{O}_X \to \widetilde{\mathcal{T}} \xrightarrow{\sigma} \mathcal{T}_X \to 0$$

is exact. i.e. a central extension of \mathcal{T}_X by \mathcal{O}_X .

Lemme 4.4. — There is an equivalence

$$\begin{aligned} \operatorname{tdo}(X) &\cong \operatorname{Picalgbd}(X) \\ D &\mapsto \operatorname{Lie} D \\ \left(\widetilde{T}\right) / \left(i - 1_{\widetilde{T}}\right) &\longleftrightarrow \widetilde{T} \end{aligned}$$

Another way to think about it is via twisted cotangent bundles. i.e. \mathcal{T}_X^* - torsor on $X, \psi \xrightarrow{\pi_{\psi}} X$ with symplectic form such that the projection is a lagrangian fibration, compatible to the \mathcal{T}_X^* -action.

Remarque 4.5. — \mathcal{D}_X -action on a vector bundle $\mathcal{E} \to X$ is an \mathcal{O}_X -morphism $\mathcal{T}_X \to \widetilde{\mathcal{T}}_{\mathcal{E}}$, which is a connection on $\widetilde{\mathcal{T}}_{\mathcal{E}}$ (or on \mathcal{E}).

7 mars 2018

SASHA MINETS