NOTES OF 14 MARCH 2018 : D-MODULES : HORSING AROUND

Sasha Minets

1. Plan

In this talk, we will talk about

1. \mathcal{D}-algebras
2. Lie algebroids
3. Equivariant \mathcal{D}-modules
4. Twisted differential operators
5. Monodromic \mathcal{D}-modules

2. \mathcal{D}-algebras

Recall that for a smooth variety X over $k=\mathbf{C}$ we have defined \mathcal{D}_{X} as the subring generated by \mathcal{O}_{X} and $\mathcal{T}_{X}=\mathcal{D e r} \mathcal{O}_{X}$ inside the sheaf of ring $\mathcal{E} \mathrm{nd}_{\mathbf{C}} \mathcal{O}_{X}$.

For example, for $X=\operatorname{Spec} k[x]=\mathbf{A}^{1}$ we have $\mathcal{D}_{\mathbf{A}^{1}}=k[x, \partial] / \partial x-x \partial=1$, with $\operatorname{deg} \partial=1$ and $\operatorname{deg} x=\operatorname{deg} 1=0$.

Roughly, a \mathcal{D}-algebra is a sort of \mathcal{O}_{X}-algebra (not actually) with a exhausting filtration $\mathcal{O} \subseteq \mathcal{D}^{1} \subseteq$ $\mathcal{D}^{2} \subseteq \cdots$ such that $\forall \xi \in \mathcal{D}^{i}$ and $\forall f \in \mathcal{O}_{X}$, we have $[f, \xi] \in \mathcal{D}^{i-1}$.

Définition 2.1. - A differential bimodule over a commutative k-algebra R is a $R \otimes R$-module M such that $M=\cup M_{i}^{\vee}$, where $M_{i}^{\vee}=\left\{m \in M ; I^{i+1} m=0\right\}$ and $I=\operatorname{ker}(R \otimes R \rightarrow R)$.

Remarque 2.2. - $I=\langle f \otimes 1-1 \otimes f ; f \in R\rangle$.
Définition 2.3. - Forr any X, a differential bimodule over X is a quasi-coherent sheaf over $\mathcal{O}_{X \times X}$, supported at the diagonal.

For example, $X=\mathbf{A}^{1} . \Delta X \subseteq X \times X=\operatorname{Spec} \mathbf{C}[x, \xi]$ with $\Delta X=V(\xi)$. Quasi-coherent sheaves on $X \times X$ are $\mathbf{C}[x, \xi]$-modules. Being supported on diagonal means the sheaf M is annihilated by some power of ξ.

Définition 2.4. - A \mathcal{D}-algebra on X is a sheaf of associated algebras \mathcal{A} such that \mathcal{A} is a differential bimodule. More precisely, \mathcal{A} is a quasi-coherent $\mathcal{O}_{X \times X^{-}}$module supported on ΔX which is equipped with a \mathcal{O}_{X}-linear multiplication which makes it into an associated algebra.

For example, take $M, N \in \operatorname{Coh} X$, then $\operatorname{Hom}_{\mathbf{C}}(M, N)$ is a \mathcal{O}_{X}-bimodule. If we pick out the sections supported on the diagonal, we get a differential bimodule $\operatorname{Diff}(M, N)$. If $M=N$, we denote $\mathcal{D}_{M}=\operatorname{Diff}(M, M)$.

3. Lie algebroids

Let G be a semisimple algebraic group and \mathfrak{g} its Lie algebra, we have $\mathrm{U}(\mathfrak{g})$.
If we replace groups with groupoids (stacks), then the concept of Lie algebras should become Lie algebroids and $\mathcal{U}(\mathfrak{g})$ should become \mathcal{D}-algebras.

Définition 3.1. - A Lie algebroid L on X is an \mathcal{O}_{X}-module equipped with an "anchor" $\sigma: L \rightarrow \mathcal{T}_{X}$ and a Lie bracket [,]: $L \otimes_{\mathbf{C}} L \rightarrow L$ such that

1. [,] is a Lie bracket and σ commutes with Lie brackets.
2. If $l_{1}, l_{2} \in L$ and if $f \in \mathcal{O}_{X}$, then

$$
\left[l_{1}, f l_{2}\right]=f\left[l_{1}, l_{2}\right]+\sigma\left(l_{1}\right)(f) L_{2}
$$

Remarque 3.2. - The condition 2 should be viewed as a sort of Leibniz rule.

For example, let $f: F \rightarrow X$ be a G-torsor. Define $\widetilde{\mathcal{T}}_{f}=\{G$-invariant vector fields on F which lift a vector field on $X\}$. There is a natural morphism $\widetilde{\mathcal{T}}_{f} \rightarrow \mathcal{T}_{X}$, forgetting the vertical tangent direction, which makes it into a Lie algebroid.

Définition 3.3. - A connection on L is an \mathcal{O}_{X}-module morphism $\mathcal{T}_{X} \xrightarrow{\nabla} L$ such that $\sigma \nabla=$ id. It is flat if it commutes with brackets, i.e. the curvature morphism $C(\nabla) \in \operatorname{Hom}_{\mathcal{O}_{X}}\left(\wedge^{2} T_{X}\right.$, $\left.\operatorname{ker} \sigma\right)$ defined by

$$
C(\nabla)\left(\tau_{1} \wedge \tau_{2}\right)=\left[\nabla \tau_{1}, \nabla \tau_{2}\right]-\nabla\left[\tau_{1}, \tau_{2}\right]
$$

vanishes.

Let G be acting on X. Then we have an infinitesimal action $\mathfrak{g}_{X}=\mathfrak{g} \otimes \mathcal{O}_{X} \xrightarrow{\sigma} \mathcal{T}_{X}$, which makes \mathfrak{g}_{X} a Lie algebroid. If $X \rightarrow Z$ is a G-torsor, we get an exact sequence

$$
0 \rightarrow \widetilde{\mathfrak{g}}_{X} \rightarrow \widetilde{\mathcal{T}}_{X} \rightarrow \mathcal{T}_{Z} \rightarrow 0
$$

If we have a "groupoid action" on X (see Beĭlinson-Bernstein for details), then we get a Lie algebroid on X.

Let \mathcal{A} be a \mathcal{D}-algebra with $i: \mathcal{O}_{X} \rightarrow \mathcal{A}$. We view \mathcal{A} as left \mathcal{O}_{X} by left multiplication through i. Then $\operatorname{Lie} \mathcal{A}=\left\{(\tau, a) \in \mathcal{T}_{X} \times \mathcal{A} ; i \tau(f)-i(f) a\right\}$. There is a canonical morphism Lie $\mathcal{A} \xrightarrow{\sigma} \mathcal{T}_{X}$ which takes the tangent component. The functor $\mathcal{A} \mapsto \operatorname{Lie} \mathcal{A}$ admits a left adjoint $\mathcal{U}:($ Lie algebroids $) \rightarrow(\mathcal{D}$-algebras). The \mathcal{D}-algebra $\mathcal{U}(L)$ is the "smallest" algebra with the following data

1. morphisms $i: \mathcal{O}_{X} \rightarrow \mathcal{U}(L)$ and $i_{L}: L \rightarrow \mathcal{U}(L)$ of let \mathcal{O}_{X}-modules.
2. satisfying

$$
i_{L}(f l)=i(f) i_{L}(l)
$$

and

$$
\left[i_{L}(l), i(f)\right]=i(\sigma(l)) f
$$

4. Twisted differential operators

Idea : \mathcal{D}_{X} is generated by \mathcal{O}_{X} and \mathcal{T}_{X} inside $\mathcal{E} \mathrm{nd}_{\mathbf{C}}\left(\mathcal{O}_{X}\right)$. Twisted differential operators (tdo) will be something generated by \mathcal{O}_{X} and \mathcal{T}_{X}, with some slightly different relations between them.

Définition 4.1. - A tdo is a \mathcal{D}-algebra \mathcal{A} (with filtration $\mathcal{A}_{0} \subseteq \mathcal{A}_{i} \subseteq \cdots$) such that

1. $\mathcal{O}_{X} \rightarrow \mathcal{A}_{0}$ is an isomorphism
2. $\sigma: \mathcal{A}_{1} / \mathcal{A}_{0} \rightarrow \operatorname{Der} \mathcal{A}_{0}=\mathcal{T}_{X}$ defined by $\sigma(\partial)(f)=\partial f-f \partial$ is an isomorphism.

Remarque 4.2. - Under these conditions, we have $\operatorname{gr} \mathcal{A} \cong \operatorname{Sym} \mathcal{T}_{X}$.
Définition 4.3. - A Picard (Lie) algebroid is a Lie algebroid $\widetilde{\mathcal{T}}$ equipped with a section

$$
\mathcal{O}_{X} \rightarrow \widetilde{\mathcal{T}}^{0}:=\operatorname{ker} \sigma
$$

such that

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \widetilde{\mathcal{T}} \xrightarrow{\sigma} \mathcal{T}_{X} \rightarrow 0
$$

is exact. i.e. a central extension of \mathcal{T}_{X} by \mathcal{O}_{X}.
Lemme 4.4. - There is an equivalence

$$
\begin{aligned}
& \operatorname{tdo}(X) \cong \operatorname{Picalgbd}(X) \\
& D \mapsto \operatorname{Lie} D \\
& \mathcal{U}(\widetilde{T}) /\left(i-1_{\widetilde{T}}\right) \leftrightarrow \widetilde{T}
\end{aligned}
$$

Another way to think about it is via twisted cotangent bundles. i.e. \mathcal{T}_{X}^{*} - torsor on $X, \psi \xrightarrow{\pi_{\psi}} X$ with symplectic form such that the projection is a lagrangian fibration, compatible to the \mathcal{T}_{X}^{*}-action.
Remarque 4.5. - \mathcal{D}_{X}-action on a vector bundle $\mathcal{E} \rightarrow X$ is an \mathcal{O}_{X}-morphism $\mathcal{T}_{X} \rightarrow \widetilde{\mathcal{T}}_{\mathcal{E}}$, which is a connection on $\widetilde{\mathcal{T}}_{\mathcal{E}}$ (or on \mathcal{E}).

