NOTES OF 28 MARCH 2018 : \mathcal{D} -MODULES II

ÉLIE CASBI

1. Setting

Let X be a smooth variety over \mathbf{C} , \mathcal{O}_X the structure sheaf, Θ_X the tangent bundle and $\mathcal{D}_X \subseteq \operatorname{End}_{\mathbf{C}}(\mathcal{O}_X)$ the sheaf of differential operators.

2. Recall of non-derived pull-back and push-forward

Let $f: X \to Y$ be a morphism of smooth varieties. To f we can associate two functors: pull-back

$$M_l(\mathcal{D}_X) \ni f^*M \hookleftarrow M \in M_l(\mathcal{D}_Y)$$

Définition 2.1. — We put $\mathcal{D}_{X\to Y} = \mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}\mathcal{D}_Y$ and $f^*M = \mathcal{D}_{X\to Y} \otimes_{f^{-1}\mathcal{D}_Y} f^{-1}M$. This is the pull-back of left \mathcal{D} -modules.

and push-forward

$$M_r(\mathcal{D}_X) \ni N \mapsto f_* N \in M_r(\mathcal{D}_Y)$$

Définition 2.2. — We put $f^*N = {}^{\mathcal{O}}f_*(N \otimes_{\mathcal{D}_X} \mathcal{D}_{X \to Y})$. This is the push-forward of right \mathcal{D} -modules.

For example, if $j: U \hookrightarrow X$ is an open embedding, then j^* is the restriction to the open subset U, whereas j_* turns \mathcal{D}_U -modules into \mathcal{D}_X -modules via the localisation of ring $\mathcal{D}_X \to \mathcal{D}_U$.

For closed embedding $i: X \hookrightarrow Y$ such that $X = \{y_{r+1} = \dots = y_n = 0\}$, we have

$$i_*M=\bigoplus_{i_1,\dots,i_{n-r}\geq 0}M\partial_{r+1}^{i_1}\dots\partial_n^{i_{n-r}}$$

3. Derived pull-back and push-forward

Définition 3.1. — The derived pull-back is

$$f^* : \mathrm{D}^b\left(M_l\left(\mathcal{D}_Y\right)\right) \to \mathrm{D}^b\left(M_l\left(\mathcal{D}_X\right)\right)$$

$$M \mapsto \mathcal{D}_{X \to Y} \otimes^{\mathrm{L}} M$$

2 ÉLIE CASBI

Définition 3.2. — The derived push-forward is

$$f_*: \mathrm{D}^b\left(M_r\left(\mathcal{D}_X\right)\right) \to \mathrm{D}^b\left(M_r\left(\mathcal{D}_Y\right)\right)$$

$$M \mapsto \mathrm{R}^{\mathcal{O}} f_*\left(M \otimes^{\mathrm{L}} \mathcal{D}_{X \to Y}\right)$$

Here the index \mathcal{O} is to distinguish the usual push-forward of coherent \mathcal{O}_X -modules from the push-forward of \mathcal{D}_X -modules.

We have composition laws $(f \circ g)^* = g^* \circ f^*$ and $(f \circ g)_* = f^* \circ g^*$.

Remarque 3.3. — Whenever f is smooth, f^* is exact.

4. De Rham and Spencer complex

Recall that we have the de Rham complex $dR(\mathcal{D}_X)$:

$$0 \to \Omega_X^0 \otimes \mathcal{D}_X \xrightarrow{d} \Omega_X^1 \otimes \mathcal{D}_X \to \dots \to \Omega_X^{d_X} \otimes \mathcal{D}_X \to 0$$

Proposition 4.1. — $dR(\mathcal{D}_X)$ is a resolution of $\Omega_X^{d_X}$ in $D^b(\operatorname{Mod}_r(\mathcal{D}_X))$.

Corollaire 4.2. — $dR(M) \cong \Omega_X^{d_X} \otimes^L M$ in $D^b(\mathcal{D}_X)$.

Dually, we have the Spencer complex $\mathrm{Sp}(\mathcal{D}_X)$:

$$0 \to \mathcal{D}_X \otimes \bigwedge^{d_X} \Theta_X \xrightarrow{d} \dots \xrightarrow{d} \mathcal{D}_X \otimes \bigwedge^0 \Theta_X \to 0$$

Proposition 4.3. — $\operatorname{Sp}(\mathcal{D}_X)$ is a resolution of \mathcal{O}_X in $\operatorname{D}^b(\operatorname{Mod}_l(\mathcal{D}_X))$.

5. Coherent \mathcal{D} -modules

Recall that \mathcal{D}_X is equipped with a filtration by order

$$\mathcal{D}_{X}^{0} = \mathcal{O}_{X}$$

$$\mathcal{D}_{X}^{1} = \mathcal{O}_{X} \oplus \Theta_{X}$$

$$\mathcal{D}_{X}^{i} \mathcal{D}_{X}^{j} \subseteq \mathcal{D}_{X}^{i+j}$$

$$\left[\mathcal{D}_{X}^{i}, \mathcal{D}_{X}^{j}\right] \subseteq \mathcal{D}_{X}^{i+j-1}$$

We can introduce filtrations on modules:

Définition 5.1. — A filtration on a \mathcal{D}_X -module M is a sequence of abelian subsheaves of M ... $\subseteq F_iM \subseteq F_{i+1}M \subseteq ...$

such that $F_iM = 0$ for $i \ll 0$, that $M = \bigcup_i F_iM$, and that $\mathcal{D}_X^i F_jM \subseteq F_{i+j}M$.

For any filtred module M, we put

$$\operatorname{gr}^F M := \bigoplus_i F_i M / F_{i-1} M$$

Théorème 5.2. We have a canonical isomorphism $\operatorname{gr} \mathcal{D}_X \cong {}^{\mathcal{O}}\pi_*\mathcal{O}_{T^*X}$.

Sketch of proof. — Take any coordinate chart x_1, \dots, x_n , so that we have $\xi_i \in \mathcal{O}_{T^*X}$ and $\partial_i \in \mathcal{D}_X$.

We introduce the **principal symbols**. Let $P \in F_l \mathcal{D}_X$, $P = \sum_{|\alpha| \leq l} a_{\alpha} \partial^{\alpha}$. Then $P \mod F_{l-1} = \sum_{|\alpha| = l} a_{\alpha} \xi^{\alpha}$.

We have an assignment
$$\mathcal{D}_X \ni P \mapsto \overline{P} \in \operatorname{gr} \mathcal{D}_X \cong \mathcal{O}_X [\xi_1, \dots, \xi_n] = \operatorname{Sym}(\Theta_X)$$
.

Définition 5.3. — Let M be a filtred \mathcal{D}_X -module with a filtration F. We say that F is **good** if $\operatorname{gr}^F M$ is a coherent $\operatorname{gr} \mathcal{D}_X$ -module.

Théorème 5.4. — For a quasi-coherent \mathcal{D}_X -module M, we have

- If M admits a good filtration, then it is coherent \mathcal{D}_X -module
- Conversely

6. Characteristic variety and singular support

Let M be a coherent \mathcal{D}_X -module. Let F be a good filtration on M. We put $\widetilde{\operatorname{gr} M} = \mathcal{O}_{T^*X} \otimes_{\pi^{-1} \operatorname{gr} \mathcal{D}_X} \pi^{-1} \operatorname{gr}^F M$, which is an \mathcal{O}_{T^*X} -module.

Définition 6.1. — The support of $\operatorname{gr}^F M$, defined by the radical of its annihilator in \mathcal{O}_{T^*X} , is called the **characteristic variety** of M, denoted $\operatorname{char}(M) \subseteq T^*X$.

Proposition 6.2. Let $0 \to M \to N \to L \to 0$ be an exact sequence of left \mathcal{D}_X -modules. Then $\operatorname{char}(N) = \operatorname{char}(M) \cup \operatorname{char}(L)$.

Théorème 6.3. — Let $f: X \to Y$. A sufficient condition on f for that f^* preverses the coherence of a \mathcal{D}_Y -module M is that f is non-characterstic for M.

Théorème 6.4. — When f is proper, f_* preserves the coherence.

7. Kashiwara Theorem

Théorème 7.1 (Kashiwara). — For a closed embedding $i: Z \hookrightarrow X$, the direct image $i_*: \operatorname{Mod}(\mathcal{D}_Z) \to \operatorname{Mod}^Z(\mathcal{D}_X)$ is an equivalence of categories, where $\operatorname{Mod}^Z(\mathcal{D}_X)$ is the category of \mathcal{D}_X -modules which is supported on Z when viewed as \mathcal{O}_X -module.

8. Holonomicity

In order to remedy to the problem of coherence not being preserved in general, we introduce a smaller class of \mathcal{D} -modules.

Proposition 8.1. — For each irreducible component of $char(M) \subseteq T^*X$ is of dimension $\geq dim X$.

Démonstration. — Assume dim char(M) < dim X. Then M is supported on some $i: Z \to X$ of dimension < dim X. Then by the theorem of Kashiwara, there exists $N \in \text{Mod}(\mathcal{D}_Z)$ such that $M \cong i_*N$. Let $\delta_N = \dim \text{char}(N) - \dim Z$. This number is preserved under direct image. Then we have

$$\delta_M = \delta_N < 0$$

contradiction. \Box

Définition 8.2. — A \mathcal{D}_X -module is called **holonomic** if dim char(M) = dim X.

Proposition 8.3. — The holonomicity is preserved by extensions, submodules, quotients, direct images and inverse images.

7 mars 2018

ÉLIE CASBI