NOTES OF 2 MAI 2018 : HARISH-CHANDRA MODULES, MONODROMIC \mathcal{D} -MODULES

WILLE LIU

1. Goal

The goals of the talk today is to

(i). explain the Harish-Chandra algebras and Harish-Chandra modules, weak and strict(ii). explain the monodromic construction of twisted differential algebras

We follow Beĭlinson–Bernstein.

2. Harish-Chandra modules

Let G be an algebraic group over C and X be a variety equipped with a G-action $\mu: G \times X \to X$.

2.1. infinitesimal equivariance. — Denote $\mathcal{T}_X \subseteq \mathcal{E}nd_{\mathbf{C}}(\mathcal{O}_X)$ the tangent sheaf of X. Let $\mathfrak{g} = \text{Lie} G$. There is an infinitesimal action $\alpha : \mathfrak{g} \to \mathcal{T}_X$. We form the Lie algebroid $\tilde{\mathfrak{g}}_X = \mathcal{O}_X \otimes_{\mathbf{C}} \mathfrak{g}$ by setting

$$\sigma: \widetilde{\mathfrak{g}}_X \to \mathcal{T}_X$$

$$f \otimes \gamma \mapsto f\alpha(\gamma)$$

$$[-,-]: \widetilde{\mathfrak{g}}_X \times \widetilde{\mathfrak{g}}_X \to \widetilde{\mathfrak{g}}_X$$

$$(f_1 \otimes \gamma_1, f_2 \otimes \gamma_2) \mapsto f_1 f_2 \otimes [\gamma_1, \gamma_2]$$

$$+ f_1 \alpha(\gamma_1)(f_2) \gamma_2 - f_2 \alpha(\gamma_2)(f_1) \gamma_1$$

Let $P \in \operatorname{QCoh}^G(X)$ be a *G*-equivariant quasi-coherent \mathcal{O}_X -module. The Lie algebroid of infinitesimal symmetries of *P* is a sub-sheaf $\widetilde{\mathcal{T}}_P \subseteq \mathcal{T}_X \times \mathcal{E}\operatorname{nd}_{\mathbf{C}}(P)$ defined by

$$\overline{\mathcal{T}_P} = \{(\xi, \varphi) \in \mathcal{T}_X \times \mathcal{E}nd_{\mathbf{C}}(P) ; \varphi(fs) = \xi(f)s + f\varphi(s)\}$$

together with the first projection $\sigma = \operatorname{pr}_1 : \widetilde{\mathcal{T}}_P \to \mathcal{T}_X$. The *G*-equivariant structure on *P* induces a morphism of Lie algebroids $\alpha_P : \widetilde{\mathfrak{g}}_X \to \widetilde{\mathcal{T}}_P$.

Let M be a quasi-coherent \mathcal{O}_X -module.

Définition 2.2. — A g-action on M is a morphism of Lie algebroids $\widetilde{\mathfrak{g}}_X \to \widetilde{\mathcal{T}}_M$, or equivalently, it is a morphism of Lie algebras $\alpha_M : \mathfrak{g} \to \operatorname{End}_{\mathbf{C}}(M)$ such that

$$\alpha_P(\gamma)(fm) = f\alpha_P(\gamma)(m) + \alpha(\gamma)(f)m.$$

We denote $\operatorname{QCoh}^{\mathfrak{g}}(X)$ the category of quasi-coherent \mathcal{O}_X -module equipped with a \mathfrak{g} -action.

2.3. *G*-equivariant differential bi-modules. — Let M be an \mathcal{O}_X -differential bi-module on X i.e. a quasi-coherent $\mathcal{O}_{X \times X}$ -module supported on the diagonal.

Let $G^{\wedge} \hookrightarrow G \times G$ be the formal completion of $G \times G$ along the diagonal G_{Δ} , which is a group formal scheme acting on $X \times X$.

Définition 2.4. — A G-action on M as differential bi-module is an action of G^{\wedge} on the M.

Since in characteristic 0, formal groups are determined by their Lie algebra, one can describe a G-action on M in terms of Lie algebras.

Proposition 2.5. — A G-action on M is equivalent to a pair (μ_M, α_M) , where μ_M is a G-equivariant structure on M, with G acting on $X \times X$ diagonally, and α_M is a $(\mathfrak{g} \times \mathfrak{g})$ -action on M, such that the differential of μ_M is agrees with α_M restricted to the diagonal $\mathfrak{g} \subseteq \mathfrak{g} \times \mathfrak{g}$.

In summary, the category of G-equivariant differential bimodules on X is the 2-fibred product

$$\operatorname{QCoh}_{X_{\Delta}}^{\mathcal{G}_{\Delta}}(X \times X) \times_{\operatorname{QCoh}_{X_{\Delta}}^{\mathfrak{g}_{\Delta}}(X \times X)} \operatorname{QCoh}_{X_{\Delta}}^{\mathfrak{g} \times \mathfrak{g}}(X \times X)$$

which is equivalent to $\operatorname{QCoh}_{X_{\Delta}}^{G^{\wedge}}(X \times X)$.

2.6. Harish-Chandra algebras. — Let \mathcal{A} be a differential algebra, i.e. differential bimodule $\mathcal{A} \in \operatorname{QCoh}_{X_{\Delta}}(X \times X)$ with a multiplicative structure together with a morphism of algebras $\mathcal{O}_{X_{\Delta}} \to \mathcal{A}$ which is compatible with $\mathcal{O}_{X \times X}$ -module structure.

Définition 2.7. — A *G*-action on \mathcal{A} is a *G*-action $(\mu_{\mathcal{A}}, \alpha_{\mathcal{A}})$ as \mathcal{O}_X -differential bimodule such that

(i). $(\mathcal{A}, \mu_{\mathcal{A}}) \in \operatorname{Alg}^{G}(X \times X)$ and (ii). $\alpha_{\mathcal{A}}(\gamma, 0) (a_{1}a_{2}) = \alpha_{\mathcal{A}}(\gamma, 0) (a_{1})a_{2}$ and $\alpha_{\mathcal{A}}(0, \gamma) (a_{1}a_{2}) = a_{1}\alpha_{\mathcal{A}}(\gamma, 0) (a_{2})$.

A differential algebra with a G action is called a **Harish-Chandra algebra** or a (\mathcal{O}_X, G) differential algebra.

Remarque 2.8. — One can similarly define Harish-Chandra Lie algebebroid in such a way that there is an adjunction

$$\{\text{HC-Lie algebroid}\} \xrightarrow[\text{Lie}]{U} \{\text{HC-algebra}\}$$

which enhances the adjunction Lie-algebroids-differential-algebras.

- **2.9. Harish-Chandra modules.** Let $(\mathcal{A}, \mu_{\mathcal{A}}, \alpha_{\mathcal{A}})$ be a Harish-Chandra algebra.
- **Définition 2.10**. (i). The category of weak (\mathcal{A}, G) -modules is Mod (\mathcal{A}, G) _{weak} = $\operatorname{QCoh}^{G}(\mathcal{A})$.
- (ii). An (\mathcal{A}, G) -module is a weak (\mathcal{A}, G) -module M such that for all $\gamma \in \mathfrak{g}$, the action of $\alpha_{\mathcal{A}}(\gamma, 0)$ (1) $\in \mathcal{A}$ agrees with the infinitesimal equivariance $\alpha_{M}(\gamma)$ induced by the G-equivariance of M. The category of (\mathcal{A}, G) -modules is denoted Mod (\mathcal{A}, G)

Exemple 2.11. — When X = pt and $\mathcal{A} = \mathbf{C}_X$, the weak and strict (\mathcal{A}, G) -modules are $\text{Mod}(\mathcal{A}, G)_{\text{weak}} = \text{Rep}(G)$ and $\text{Mod}(\mathcal{A}, G) \cong \text{Rep}(\pi_0(G))$.

The tensor product $\mathcal{A} \otimes_{\mathbf{C}} U(\mathfrak{g})$ is a Harish-Chandra algebra in a natural way.

- Lemme 2.12. Weak (\mathcal{A}, G) -modules are the same as $(\mathcal{A} \otimes_{\mathbb{C}} U(\mathfrak{g}), G)$ -modules.
- Lemme 2.13. (i). Harish-Chandra algebras on X are the same as differential algebras on $[G \setminus X]$.
- (ii). Let \mathcal{A} be a Harish-Chandra algebra. An (\mathcal{A}, G) -module is the same as a module over the algebra on the stack $[G \setminus X]$.

In the case where $\pi : X \to Z$ is a *G*-torsor and \mathcal{A} is a Harish-Chandra algebra on X, we define $\widetilde{\mathcal{A}}_Z = (\pi_* \mathcal{A})^G$. The corresponding differential algebra on the quotient $[G \setminus X] = Z$ is $\mathcal{A}_Z = \widetilde{\mathcal{A}}_Z / \widetilde{\mathfrak{g}}_Z \cdot \widetilde{\mathcal{A}}_Z$ where $\widetilde{\mathfrak{g}}_Z = (\pi_* \mathcal{O}_X \otimes \mathfrak{g})^G$ is the "vertical part".

Given any differential algebra \mathcal{A}_Z on Z, defining $\mathcal{A} = \pi^* \mathcal{A}_Z$, the equivalence on weak modules is given by

$$\operatorname{Mod} (\mathcal{A}, G)_{\operatorname{weak}} \xrightarrow{\cong} \operatorname{Mod} \left(\widetilde{\mathcal{A}}_Z \right)$$
$$M \longmapsto (\pi_* M)^G$$
$$\pi^{-1} \left(\pi_* \mathcal{A} \otimes_{\widetilde{\mathcal{A}}_Z} N \right) \longleftrightarrow N$$

which induces an equivalence of subcategories

$$\operatorname{Mod}(\mathcal{A}, G) \stackrel{\cong}{\longrightarrow} \operatorname{Mod}(\mathcal{A}_Z)$$

3. Monodromic twisted \mathcal{D} -modules

3.1. comparison with untwisted \mathcal{D} -modules. — Let H be a torus X be a smooth variety and $\pi : \widetilde{X} \to X$ be an H-torsor. We have $\widetilde{D}_X = (D_{\widetilde{X}})^H$. From the previous discussion, there are equivalences $\operatorname{Mod}(\widetilde{\mathcal{D}}_X) \cong \operatorname{Mod}(\mathcal{D}_{\widetilde{X}}, H)_{\text{weak}}$ and $\operatorname{Mod}(\mathcal{D}_X) \cong \operatorname{Mod}(\mathcal{D}_{\widetilde{X}}, H)$.

Let $\mathfrak{h}_{\mathbf{Z}} = \operatorname{Hom}(H, \mathbf{C}^{\times}) \subseteq \mathfrak{h}^*$. For $\lambda \in \mathfrak{h}^*$, we denote $\overline{\lambda} = \lambda + \mathfrak{h}_{\mathbf{Z}}^* \subseteq \mathfrak{h}$.

The equivalence

$$\operatorname{Mod}\left(\left(\pi_{*}\mathcal{D}_{\widetilde{X}}\right)^{H}\right) \cong \operatorname{Mod}\left(\mathcal{D}_{\widetilde{X}},H\right)_{\operatorname{weak}}$$

sends $\operatorname{Mod}_{\operatorname{fin}}\left(\left(\pi_{*}\mathcal{D}_{\widetilde{X}}\right)^{H}\right)$ to a subcategory $\operatorname{Mod}_{\operatorname{fin}}\left(\mathcal{D}_{\widetilde{X}},H\right)_{\operatorname{weak}}$.

There is a forgetful functor $o: \operatorname{Mod} \left(\mathcal{D}_{\widetilde{X}}, H \right)_{\operatorname{weak}} \to \operatorname{Mod} \left(\mathcal{D}_{\widetilde{X}} \right)$ which sends $\operatorname{Mod} \left(\mathcal{D}_{\widetilde{X}}^{\lambda} \right)$ to $\operatorname{Mod} \left(\mathcal{D}_{\widetilde{X}} \right)_{\overline{\lambda}}$.

Lemme 3.2. — The functor

$$o: \operatorname{Mod}\left(\mathcal{D}_{\widetilde{X}}^{\lambda}\right) \to \operatorname{Mod}\left(\mathcal{D}_{\widetilde{X}}\right)_{\overline{\lambda}}$$

is an equivalence.

Remarque 3.3. — We have thus a characterisation of $\operatorname{Mod}\left(\mathcal{D}_{\widetilde{X}}^{\lambda}\right)$ as a full subcategory of the category of \mathcal{D} -modules on \widetilde{X} , which allows to transmit the standard results of \mathcal{D} -modules to the category $\operatorname{Mod}\left(\mathcal{D}_{\widetilde{X}}^{\lambda}\right)$.

There is also a version for $\widetilde{\lambda}$.

3.4. equivariant monodromic \mathcal{D} -modules. — Let G be another algebraic group with $\pi_0(G)$ acting on H. Let \widetilde{X} be a $G \ltimes H$ -variety such that $\pi : \widetilde{X} \to X$ is an H-torsor. Let $\operatorname{Mod}(\widetilde{\mathcal{D}}_X, G)$ be the category of weak $(\mathcal{D}_{\widetilde{X}}, G \ltimes H)$ -modules which are strong along G.

Lemme 3.5. — For $\lambda \in \mathfrak{h}^*$, let $G_{\lambda} = \operatorname{Stab}_G(\lambda)$ and let λ° be its G-orbit. There is an equivalence

$$\operatorname{Mod}\left(\mathcal{D}_{\widetilde{X}}, G\right)_{\widetilde{\lambda}} \cong \operatorname{Mod}\left(\mathcal{D}_{X}, G_{\lambda}\right)_{\widetilde{\lambda}}$$

WILLE LIU