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1. References

We follow mainly SGA 4 1/2, Freitag–Kiehls and Kiehls–Weissauer.

2. Introduction

2.1. Counting rational points on a variety. — Let X0 be an algebraic variety over a finite field
Fq. One introduces the zeta function for X0 :

ζ (X0, s) = ∑
S∈Z0(X0)+

1

(#degS)s

where Z0(X0)+ is the semigroup of effective algebraic 0-cycles on X0. Its Euler product formula
takes the form

ζ (X0, s) = ∏
x∈∣X0∣

1

1 − (#k(x))−s

Here ∣X0∣ is the set of closed points of X0 and k(x) is the residue field (which is a finite extension
of Fq) of x. If we let deg(x) = [k(x) ∶ Fq] and we introduce a change of variable T = q−s, then

log ζ (X0, T ) = ∑
x∈∣X0∣

− log (1 − T deg(x)) = ∑
x∈∣X0∣

∑
k≥1

T kdeg(x)

k
= ∑

n≥1

⎛
⎜⎜⎜
⎝
∑
d∣n

∑
x∈∣X0∣

deg(x)=d

d

⎞
⎟⎟⎟
⎠

Tn

n

On the other hand, we have the following counting formula (easily derived from the Galois theory)
for each k ≥ 1

#X0 (Fqn) =∑
d∣n

∑
x∈∣X0∣

deg(x)=d

d.

Therefore the power series

log ζ (X0, T ) = ∑
n≥1

#X0 (Fqn)
Tn

n

encode the number of rational points of X0 and its base change to Fqn . Taking the derivative,

T
ζ ′ (X0, T )
ζ (X0, T )

= ∑
n≥1

#X0 (Fqn)Tn.
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2.2. Weil conjectures. — For X0 a projective smooth algebraic variety over Fq, André Weil
famously conjectured the following properties on ζ(X0, T ) :

1. ζ(X0, T ) is a rational function on T , in the forms

ζ(X0, T ) =
dimX0

∏
k≥0

Pk(T )(−1)
k+1

where Pk(T ) ∈ Z[T ]
2. there is a functional equation between ζ(X0,1/qdimX0T ) and ζ(X0, T ).
3. The roots of the polynomials Pk(T ) are all of absolute value equal to q−k/2.

Some heuristics behind 1 and 2 :

– Denote k = Fq an algebraic closure. Let X = X0 ⊗Fq k. This should be field as an analogue of
algebraic manifold.

– Let q = pr where p is a prime number. Rational points X0(Fqn) should be viewed as fixed points
the Frobenius endomorphism (which is a morphism of varieties over k)

Fn
X/k ∶X →X

x↦ xqn

– there should be an analogue of singular cohomology Hk(X) and Lefschetz fixed-points formula,
stating that

χ (Fn
X/k) =

2dimX

∑
k≥0
(−1)k tr ((Fn

X/k)
∗
; Hk (X))

where χ is the Lefschetz index.
– The graph of the Frobenius morphism in X ×X is transversal to the diagonal ∆X , so that the

fixed points being the intersection are multiplicity-free and therefore #X0 (Fqn) = χ (Fn
X/k).

– Putting all n together, we will have

T
ζ ′ (X0, T )
ζ (X0, T )

=
2dimX

∑
k≥0
(−1)k ∑

n≥1
tr ((Fn

X/k)
∗
; Hk (X))Tn

and thus

ζ (X0, T ) =
2dimX

∏
k≥0

det (1 − F∗X/kT ; Hk(X))
(−1)k+1

.

Setting Pk(T ) = det (1 − F∗X/kT ; Hk(X))
(−1)k+1

.
– There should be a Poincaré duality, relating Pk(T ) and P2n−k(1/qdimX0T ) thus giving a func-

tional equation between ζ(X0, T ) and ζ(X0,1/qdimX0T ).

The remaining question 3 is that the roots of Pk(T ) = det (1 − F∗X/k ; Hk(X)) should have absolute
value q−k/2. In other words, the absolute value of each eigenvalue of the Frobenius F∗X/k acting on
the k-th cohomology Hk(X) should be qk/2. We shall call it the Riemann hypothesis.

3. Étale topology

In the following, we consider general schemes

Définition 3.1. — A morphism of varieties f ∶X → Y is called étale if

1. f is locally of finite presentation
2. f is flat
3. ΩX/Y = 0.
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Let X be a scheme, we define the small étale site Ét(X). Ét(X) is a category whose objects are
étale morphisms Y →X and whose morphisms are commutative triangles

Y Y ′

X

Remarque 3.2. — 1. In this the above diagram, Y → Y ′ is automatically étale.
2. Etale morphisms are open mappings on the underlying Zariski topology.

In the following, the structure morphism Y →X will be omited.

We say that a morphism Y → Y ′ in Ét(X) is an étale covering if it is surjective.

3.3. Étale topos. — A presheaf on Ét(X) is a functor

G ∶ Ét(X)op → Set .

A presheaf G on Ét(X) is called a sheaf if the following conditions are satisfied

1. If {Ui}i∈I is a family of objects in Ét(X), then the natural mapping

G (⊔
i∈I

U)→∏
i∈I

G (Ui)

is an isomorphism and
2. for every étale covering g ∶ U → Y in Ét(X), in the following diagram

G (Y ) G (U) G (U ×Y U)g∗
pr∗1

pr∗2

g∗ is an equaliser of pr∗1 and pr∗2.

The category of sheaves on Ét(X) will be denoted Xét and is called the étale topos of X.

The embedding functor Xét → Fct (Ét(X)op,Set) admits a left adjoint

# ∶ Fct (Ét(X)op,Set)→Xét

For any presheaf G ∈ Fct (Ét(X)op,Set), the sheaf G # is called the sheaf associated to G .

3.4. functorialities. — For any morphism of schemes f ∶ X → Y , there is an induced morphism
on the small étale sites f−1 ∶ Ét(Y )→ Ét(X) defined by base change. The functor f−1 preserves finite
limits :

f−1 (Z ×X Z ′) ≅ f−1(Z) ×Y f−1(Z ′)

as well as étale coverings :

U → V is a covering ⇒ f−1(U)→ f−1(V ) is a covering .

The morphism of sites f−1 induces an adjoint pair of functors on the topoi. There is

Xét ∋ G ↦ f∗G ∈ Yét, (f∗G ) (V ) = G (f−1(V ))
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and its left adjoint

Yét ∋ G ↦ f∗G ∈Xét, f∗G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

U ↦ limÐ→
(u,V )

V ∈Ét(Y )
u∈HomÉt(X)(U,f−1(V ))

G (V )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

#

3.5. Étale sheaves of rings and modules. —

Définition 3.6. — An étale sheaf of groups on X is a group object in Xét. An étale sheaf of
abelian groups on X is an abelian group object in Xét. An étale sheaf of commutative ring on
X is a (unital) commutative ring object in Xét.

For example, if Λ is a commutative ring, then the sheaf associated to the constant functor Y ↦ Λ
is a sheaf of commutative ring, denoted ΛX

If we fix an étale sheaf of commutative ring A, then the pair (Xét,A) is a ringed topos.

Given such a ringed topos (Xét,A), we will denote Mod(Xét,A) the category of A-modules
in the obvious sense. This category is a Grothendieck abelian category, so that we can perform the
construction of derived category D (Xét,A).

4. Étale cohomology

4.1. sheaves of rings and modules. — In what follows, we will only consider the case where Λ
is a ring and A = ΛX . In this case, we denote simply Mod (X,Λ) = Mod (Xét,ΛX) and D (X,Λ) =
D (Xét,ΛX).

Given any morphism f ∶ X → Y , we have a morphism of ringed topos : (Xét,ΛX) → (Yét,ΛY ) in
the sense that there are

f∗ ∶Xét → Yét

f∗ ∶ Yét →Xét

and a morphism of étale sheaves of rings
f∗ ((Z/ℓnZ)Y )→ (Z/ℓ

nZ)X

4.2. étale cohomology on the spectrum of a field. — Let K be a field. We denote here
S = SpecK.

Any object T ∈ Ét(S) is a disjoint union of the form SpecA, where A is a finitely generated local
étale K-algebra. It turns out that A must be a finite separable field extension of K. Therefore, fixing
a separable closure Ksep of K, the subcategory of Ét(S) consisting of spectra of finite separable
sub-extensions K ⊆ L ⊆Ksep forms a basis for Ét(S).

It is easy to deduce from the definition of étale sheaves that giving a sheaf G on Ét(S) is equivalent
to giving a discrete topological space E with a continuous Gal (Ksep/K)-action. The correspondence
is given by :

G ↦ limÐ→
K⊆L⊆Ksep

finite separable

G (L)

E ↦ (SpecL↦ EGal(Ksep/L))
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In particular, giving a sheaf of abelian groups on Ét(S) is equivalent to giving a discrete
Gal (Ksep/K)-module. Let E be a discrete Gal (Ksep/K)-module and let G be the corresponding
sheaf on Ét(S), we have

H∗ (Sét,G ) ≅ H∗ (Gal (Ksep/K) ,E) .

Remarque 4.3. — The étale cohomology theory can be roughly divided into two parts of quite
different natures : the geometric part and the arithmetic part.

The cohomology on the spectrum of a field is the “purely arithmetic” aspect of the étale cohomo-
logy. This is usually more subtle than the “purely geometric” aspect.

On the other hand, the geometric aspect is much more functorial and much closer to the classical
singular cohomology theory.

Most of the time, the arithmetic part will be kept as a symmetry on schemes and on sheaves and
we will only look at the “geometric cohomology”.

4.4. étale cohomology on a projective smooth curve. — Now we look at a “purely geometric”
example of the étale cohomology theory. Let k be an algebraically closed field and let X be a projective
connected smooth curve on k.

We consider firstly the subsheaf of invertible elements Gm = O×X ⊆ OX of the étale sheaf of regular
functions on X.

Théorème 4.5. — We have
H0 (Xét,Gm) ≅ k×

H1 (Xét,Gm) ≅ Pic(X)
H≥2 (Xét,Gm) = 0

Démonstration. — For H0, it results from the propreness of X. For H1, one interpret H1(X,Gm)
as the set of isomorphism classes of étale Gm-torsors on X. Using the theory of fpqc-descent, étale
Gm-torsors are the same as line bundles on X. Hence H1(X,Gm) ≅ Pic(X). For H≥2, one use the
following short exact sequence of sheaves of abelian groups on Ét(X) :

0→Gm →K(X)× divÐÐ→ ⊕
x∈∣X ∣

x∗Z→ 0

The question is reduced to H≥2 ((SpecK(X))ét ,Gm) ≅ H≥2 (K(X),Gm), whose vanishing relies on
Tsen’s theorem (see SGA 4 1/2 or J.-P. Serre, Galois cohomology).

We can then calculate the cohomology of torsion sheaves with the Kummer sequence. Let n ∈N∗ be
invertible in k. Consider the short exact sequence of Kummer

0→ µn →Gm
nÐ→Gm → 0.

This yields

Théorème 4.6. — We have
H0 (Xét, µn) = µn

H1 (Xét, µn) = Pic0(X)n
H2 (Xét, µn) = Z/nZ
H≥3 (Xét, µn) = 0

where Pic0(X)n is the group of n-torsion points of the jacobian variety of X. Thus it is isomorphic
to (Z/nZ)2g(X).
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4.7. base change theorems. — Let Λ be a ring such that Λ = 0 for some N ∈ N∗ invertible on
X. We denote Mod (X,Λ) the category of ΛX -modules.

Théorème 4.8 (base change theorem for proper morphisms). — Let X → Y be a proper
morphism of schemes and let g ∶ Y ′ → Y be a morphism of scheme. We form the cartesian square

X ′ X

Y ′ Y

g̃

f ′ f

g

Then, for any sheaf G ∈Mod (X,Λ) the natural morphism
g∗Rpf∗G → Rpf ′∗g̃

∗G

is an isomorphism.

The prototypical case is when g ∶ Y ′ → Y is a geometric point, in this case the theorem reads

(Rpf∗G )y ≅ H
p (Xy,G ∣

Xy

) .

To realise what this theorem is special about, one can compare it with the formal function theorem
in the theory of coherent sheaves.

Théorème 4.9 (local acyclicity theorem for smooth morphisms)

Let X → Y be a smooth morphism of schemes. Then the sheaf ΛX is universally locally f -acyclic.
That is, for any g ∶ Y ′ → Y be a qcqs morphism of scheme if we form the cartesian square

X ′ X

Y ′ Y

g̃

f ′ f

g

then, for any sheaf G ∈Mod (Y ′,Λ) the natural morphism
f∗Rpg∗G = ΛX ⊗ f∗Rpg∗G → Rpg̃∗ (g̃∗ΛX ⊗ f ′∗G ) = Rpg̃∗f

′∗G

is an isomorphism.

Exemple 4.10. — Let A be a strict henselian local ring, S = SpecA the spectrum, s ∈ S the closed
point and η ∈ S a geometric point. Let f ∶ X → S be a smooth proper morphism, then we have a
diagram of cartesian squares

Xs X Xη

{s} S {η}

fs f

g̃

fη

g

We know that
(Rpf∗ΛX)s ≅ H

p (Xs,ΛXs) .
by base change theorem for proper morphisms, and that

ΛX ≅ f∗η g∗Λη ≅ g̃∗f∗ηΛη ≅ g̃∗ΛXη

Thus
(Rpf∗ΛX)s ≅ (R

pf∗g̃∗ΛXη
)
s

Since η is a geometric point, the functor g∗ is exact, so
(Rpf∗g̃∗ΛXη

)
s
≅ (g∗Rpfη∗ΛXη

)
s
≅ (g∗Rpfη∗ΛXη

) (S) ≅ Hp (Xη,ΛXη
) .

We found that Hp (Xs,ΛXs) ≅ Hp (Xη,ΛXη
). This is an étale analogue of the Ehresmann theorem.
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Exemple 4.11. — In the setting of the previous example, if now f is proper but not necessarily
smooth and if K ⋅ ∈ D (X,Λ), then we still have a cospecialisation morphism

sp∗ ∶ Hp (Xs,K
⋅ ∣Xs)→ Hp (Xη,K

⋅ ∣Xη
) .

Let η be the image of η in S. Then Xη = Xη ×η η. It follows from the functoriality that the
cospecialisation factorises as

Hp (Xs,K
⋅ ∣Xs)→ Hp (Xη,K

⋅ ∣Xη
)→ Hp (Xη,K

⋅ ∣Xη
) .

There is an action of the galois group Gal (η, η) on Xη, on K ⋅ ∣Xη
and thus on Hp (Xη,K

⋅ ∣Xη
).

Again, by functoriality, the image of Hp (Xη,K
⋅ ∣Xη
) → Hp (Xη,K

⋅ ∣Xη
) falls into the invariants

Hp (Xη,K
⋅ ∣Xη
)Gal(η/η). Thus, we have

sp∗ ∶ Hp (Xs,K
⋅ ∣Xs)→ Hp (Xη,K

⋅ ∣Xη
)Gal(η/η)

.

One of the applications of the theory of weights gives a sufficient condition for this morphism to be
surjective. This is the local invariant cycle theorem.

4.12. constructibility. — Suppose now that Λ is a self-injective noetherian ring.

Définition 4.13. — A sheaf of Λ-modules G ∈ Mod (X,Λ) is called constructible if it is a noe-
therian object in that category. It is called of finite tor-dimension if there exists an integer n ∈N
such that Tor≥n(G ,MX) = 0 for any Λ-module M .

Let Db
ctf(X,Λ) ⊆ D(X,Λ) be the full subcategory consisting of complexes K ⋅ of bounded cohomo-

logy, such that each cohomology sheaf H k (K ⋅) is constructible and of finite tor-dimension.

Théorème 4.14. — Let X and Y be schemes of finite type over a field k and let f ∶ X → Y be a
morphism. Then the functors

Rf∗ ∶ D(X,Λ)→ D(Y,Λ)
send Db

ctf(X,Λ) to Db
ctf(Y,Λ). Similarly,

Rf∗ ∶ D(Y,Λ)→ D(X,Λ)

send Db
ctf(Y,Λ) to Db

ctf(X,Λ).

Moreover,

Théorème 4.15. — Let X be a scheme of finite type over a field k then there is a biduality functor

DX ∶ Db
ctf (X,Λ)op → Db

ctf (X,Λ)

sending G to DXG = RH om (G , ωX/k), together with a natural isomorphism id ≅DX ○DX .

4.16. derived category of constructible ℓ-adic sheaves. — Let X be a scheme of finite type
over a field k and let ℓ be a prime number which is invertible in k. We define

Db
c (X,Qℓ) = limÐ→

F /Qℓ

finite extension

⎛
⎝
lim←Ð
k≥1

Db
ctf (X,OF /ℓk)

⎞
⎠
⊗OF

F.

where OF is the integral closure of Zℓ in F . Then Db
c (X,Qℓ) is a triangulated category (this uses

the constructibility), and we have the six operations f∗, f
∗, f!, f

!,H om,⊗ on these categories.

5. Theory of weights for ℓ-adic sheaves

Let X0 be an algebraic variety over Fq and let k = Fq be an algebraic closure of Fq. We denote
X =X0 ⊗Fq k.



8 WILLE LIU

5.1. geometric Frobenius. — For any scheme S on which p = 0, there is an absolute Frobenius
morphism FrS ∶ S → S. The morphism FrS induces the identity map on the underlying topological
space but raising any regular function in OS(U) to its p-th power a ↦ ap. If f ∶ T → S is a scheme
over S, then we can form the following diagram in which the bottom-right square is cartesian :

T

Fr−1S T T

S S

FrT

f

Fr−1 f f

FrS

The universal property of fiber product then gives a morphism FrT /S ∶ T → Fr−1S T over S. This is
called the relative Frobenius morphism of T /S.

Iterating r times, we get
T

(FrrS)
−1

T T

S S

FrrT

f

(FrrS)
−1f f

FrrS

as well as FrrT /S ∶ T → Fr−rS T .

Assume now that S = SpecFq and T = X0 where q = pr. Then FrrS = idS , so we get a morphism
over Fq

FrrX0/Fq
∶X0 →X0.

Définition 5.2. — The above morphism
FX0 = Fr

r
X0/Fq

∶X0 →X0.

and the its base change to k
FX = FX0 ⊗Fq k

are called the geometric endomorphism of X.

5.3. Weil sheaves. — We keep the previous notations. Let Y0 ∈ Ét(X0) be an object with the
étale structural morphism u0 ∶ Y0 →X0. In this case, the following square is cartesian

Y0

F−1X0
Y0 Y0

X0 X0

≅

FY0

u0
u0 u0

FX0

For any sheaf G0 on Ét(X0), we have a canoncial morphism F∗ ∶ F∗0G0 → G0 defined in the following
way : for any Y0 ∈ Ét(X0) with u0 ∶ Y0 →X0, we take the composite

G (Y0) ≅ G (F−1X0
Y0) ≅ (FX0,∗G ) (Y0)

This yields a natural isomorphism of sheaves G0 ≅ FX0,∗G0. Thus by adjunction, we have a natural
isomorphism

FG0 ∶ F∗X0
G0 ≅ G0.

By by change to k, we obtain a sheaf G on Ét (X) and
FG ∶ F∗XG ≅ G .
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This construction carries out on the category of étale Z/ℓk-sheaves Mod (X0,Z/ℓkZ) and subse-
quently on

Mod (X0,Qℓ) .
Thus to any ℓ-adic étale sheaf G0 on X0, we can attach a datum (G ,FG ) where G is an ℓ-adic sheaf

on X and FG ∶ F∗XG → G is an isomorphism. It turns out that this datum suffices to determine G0.

We define

Définition 5.4. — A Weil sheaf G0 on X0 is an ℓ-adic étale sheaf G ∈Mod (X,Qℓ) together with
an isomorphism

FG ∶ F∗XG
≅Ð→ G

We get thus a fully faithful functor

Mod (X0,Qℓ)→Weil (X0,Qℓ) .

We will be focusing on Weil sheaves.

Exemple 5.5. — Let K be a finite extension of Fq and we denote d = [K ∶ Fq]. Let Ksep be a
separable closure of K so that we have a geometric point x ∈ X0(Ksep). The relative Frobenius
FSpecKsep/SpecK ∶ SpecKsep → SpecKsep acts on the field Ksep as the the canonical generator

1 ∈ Ẑ ≅ Gal (Ksep/K) .

We should think of it rather as in the Weil group W (k(x)sep/k(x)) = Z ⊆ Ẑ = Gal (k(x)sep/k(x)).
Given a Weil sheaf G0 on X0 = SpecK, we have then an endomorphism on the stalk

G0,x ≅ G0,F−1
X0

x

FG0ÐÐ→ G0,x,

denoted Fx ∶ G0,x → G0,x.

In general, if X0 is a scheme over Fq and if x ∈ ∣X0∣ is the image of a geometric point x ∶
Speck(x)sep → X0, we have a canonical action of the Weil group W (k (x)sep /k(x)) ≅ Z on the
stalk G0,x of any Weil sheaf G0 on X0, given by Fx ∶ G0 → G0.

5.6. weights. — Let τ ∶Qℓ ↪C be an embedding. Let G0 = (G ,FG ) be an ℓ-adic Weil sheaf.

Définition 5.7. — In the above notation,

(i). We say that G0 is τ -pure of weight β ∈ R if for each x ∈ ∣X0∣ and for each eigenvalue λ ∈ Qℓ

of the endomorphism
Fx ∶ G0,x → G0,x

we have
∣τ(λ)∣ = (#k(x))β/2

(ii). We say that G0 is pure of weight β ∈R if it is τ -pure of weight β for any embedding τ ∶Qℓ →C.
(iii). We say that G0 is mixed if it admits a filtration 0 = F0G0 ⊆ ⋯ ⊆ FmG0 = G0 such that each

successive quotient FiG0/Fi−1G0 is pure.

Exemple 5.8. — Let K be a finite extension of Fq with [K ∶ Fq] = d and let Tℓ = lim←Ðk≥0
µℓk ∈

Mod (SpecFq,Zℓ) be the ℓ-adic Tate module. Denoting x = SpecK, then we have

FTℓ
∶ Tℓ,K

(Fr∗
SpecK/SpecK

)
−1
∶ζ↦ζ1/qd

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ Tℓ,K

Denote Qℓ(1) = Qℓ ⊗Zℓ
Tℓ ∈∈ Mod (SpecFq,Qℓ), we see that the only eigenvalue of Fx ∶ Qℓ(1) →

Qℓ(1) is q−d = (#K)−1. Thus Qℓ(1) is pure of weight −2. This generalises to any scheme X0 over Fq.
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Exemple 5.9. — Let A0 be an abelian variety over Fq, A = A0⊗Fq k and let Tℓ (A0) = lim←Ðk≥0
A [ℓk]

be the ℓ-adic Tate module of A0, viewed as étale sheaf on SpecFq. We have

FTℓ
∶ Tℓ (A0)

x↦x1/q

ÐÐÐÐ→ Tℓ (A0) .

We put Vℓ (A0) = Tℓ(A0)⊗Zℓ
∈ QℓMod (SpecFq,Qℓ). There is a skew-symmetric non-degenerate

pairing
Vℓ (A0) × Vℓ (Â0)→Qℓ (1) .

where Â0 is the dual abelian variety. Fixing a polarisation of A0, which induces a Q-isogeny A0 → Â0.
We get a perfect pairing

Vℓ (A0) × Vℓ (A0)→Qℓ (1) .
This action is Frobenius-equivariant. Using this pairing and Rosati involution on End0A0, André

Weil showed that Vℓ (A0), as étale ℓ-adic sheaf on SpecFq, is pure of weight −1.

The reason that we have weight −1 instead of 1 as we know from number theory is that our
Frobenius FTℓ

acts as the inverse to the usual “arithmetic Frobenius” on A0 (k) which raises each
coordinate to the q-th power.

5.10. Deligne’s theorem Weil II. — The fundamental theorem of the theory of weights is the
following

Théorème 5.11 (Deligne). — Given a morphism f0 ∶ X0 → Y0 of algebraic variety over Fq and
let G0 be a mixed ℓ-adic Weil sheaf of weight ≤ β. Then for all i ≥ 0, the sheaf Rif0,!G0 is mixed of
weight ≤ β + i.

Using Verdier biduality, we obtain

Corollaire 5.12 (Weil conjectures – Riemann hypothesis). — Suppose that f0 ∶ X0 → Y0 is
smooth and proper and that G0 is pure of weight β. Then Rif0,∗G0 is pure of weight β + i.

Remarque 5.13. — The failure for a similar result for Rif∗ comes from the singularity of f0 : the
Verdier duality functor DX0 ∶ Db

c (X0,Qℓ) does not commutes with stalks : G0 ↦ G0,x even up to
shift. In order to have a good theory of weights for f0,∗, we should take the “strict stalk” functor
x! ∶ Db

c (X0,Qℓ)→ Db
c (Qℓ) into account. This leads to the introduction of mixed perverse sheaves.
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