NOTES OF 9 MAI 2018 : CLASSIFICATION OF EQUIVARIANT MONODROMIC $\mathcal{D} ext{-}MODULES$

W	ILLE	Liu

1. Langlands classification of equivariant \mathcal{D} -modules

1.1. Equivariant H**-torsors.** — Let G be another algebraic group with $\pi_0(G)$ acting on H via $\kappa: \pi_0(G) \to \operatorname{Aut} H$. Let \widetilde{X} be a $G \ltimes H$ -variety such that $\pi: \widetilde{X} \to X$ is an H-torsor. This action induces a G-action on X. In other words, $[G \setminus \widetilde{X}]$ is an H-torsor on $[G \setminus X]$.

We suppose that X has only a finite number of G-orbits.

We shall study the category $\operatorname{Mod}_{\operatorname{fin}}(\widetilde{\mathcal{D}}_X,G)$.

Recall: centre $U(\mathfrak{h}) \subseteq \widetilde{\mathcal{D}}_X$. The subcategory $\operatorname{Mod}_{\operatorname{fin}}(\widetilde{\mathcal{D}}_X, G)$ consists of those modules on which $U(\mathfrak{h})$ acts locally finitely (i.e. every local section is annihilated by an ideal of $U(\mathfrak{h})$ of finite codimension).

1.2. Action on π -fibres. — Let $G^{\kappa} = \ker \kappa \subseteq G$ be the subgroup which centralises H. For each $x \in X$, the stabiliser $G_x^{\kappa} = \operatorname{Stab}_{G^{\kappa}}(x)$ acts on the fibre $\widetilde{X}_x = \pi^{-1}(x) \subseteq \widetilde{X}$ which commutes with the H-action.

Since \widetilde{X}_x is a principal homogeneous H-space, there is a homomorphism $\varphi_x: G_x^{\kappa} \to H$ such that the G_x^{κ} -action on $\pi^{-1}(x)$ agrees with the action via φ_x and H. Clearly, $\ker \varphi_x = \operatorname{Stab}_G(\widetilde{x}) = G_{\widetilde{x}}$ for any $\widetilde{x} \in \widetilde{X}_x$.

We define $G_{(x)} = G_x/G_{\widetilde{x}}^0$ and $\mathfrak{g}_{(x)} = \text{Lie}\,G_{(x)}$. The homomorphism φ_x induces $\mathfrak{g}_{(x)} \hookrightarrow \mathfrak{h}$.

1.3. Case: homogeneous G-space. — Suppose that X = Gx for $x \in X$. Then $\widetilde{X}_x \to x$ is an H-monodromic G_x -variety.

Lemme 1.4. — There is an equivalence

$$\operatorname{Mod}(\widetilde{D}_X,G) \cong \operatorname{Mod}(\operatorname{U}(\mathfrak{h}),G_{(x)})$$

2 WILLE LIU

Démonstration. — Using the isomorphisms $[G \setminus \widetilde{X}] \cong [G_x \setminus \widetilde{X}_x]$ and $[G \setminus X] \cong [G_x \setminus \{x\}]$

$$\operatorname{Mod}(\widetilde{D}_X, G) \cong \operatorname{Mod}(\widetilde{D}_{[G \setminus X]}) \cong \operatorname{Mod}(\widetilde{D}_{[G_x \setminus \{x\}]})$$

 $\cong \operatorname{Mod}(U(\mathfrak{h}), G_x)$

Since for any $M \in \text{Mod}(U(\mathfrak{h}), G_x)$, the \mathfrak{g}_x -action on M from $d\varphi_x : \mathfrak{g}_x \to \mathfrak{h}$ agrees the one coming from the G_x action, it is clear that the G_x action factorises through $G_x/(\ker \varphi_x)^0 = G_{(x)}$. Therefore

$$\operatorname{Mod}(\operatorname{U}(\mathfrak{h}), G_x) \cong \operatorname{Mod}(\operatorname{U}(\mathfrak{h}), G_{(x)}).$$

1.5. General case. — Suppose in general that X has a finite number of G-orbits. Let $X = \bigsqcup_{i \in I} Q_i$ be the decomposition into orbits.

For $i_1, i_2 \in I$, we write $i_1 \leq i_2$ if $Q_{i_1} \subseteq \overline{Q}_{i_2}$. A subset $J \subseteq I$ is called closed if $i_1 \leq i_2$ and $i_2 \in J$ implies i_1 .

For any closed $J \subseteq I$, we denote $X_J = \bigcup_{i \in J} Q_i$ and $\mathscr{C}_J = \operatorname{Mod}(\widetilde{\mathcal{D}}_{X_J}, G)$ or $\operatorname{Mod}_{\operatorname{fin}}(\widetilde{\mathcal{D}}_{X_J}, G)$ or $\operatorname{Mod}(\widetilde{\mathcal{D}}_{X_J}, G)_{\widetilde{\lambda}}$.

Here are some properties of the family of categories $\{\mathscr{C}_J\}_{J\subseteq I}$:

- (i). $\mathscr{C}_J \subseteq \mathscr{C}_I$ is a Serre subcategory (stable under extensions, sub-objects and quotients).
- (ii). For two closed subsets J_1 and J_2 , $\mathscr{C}_{J_1\cap J_2} = \mathscr{C}_{J_1} \cap \mathscr{C}_{J_2}$ and $\mathscr{C}_{J_1\cup J_2}$ is the Serre subcategory generated by \mathscr{C}_{J_1} and \mathscr{C}_{J_2} .
- (iii). For two closed subsets J_1 and J_2 , the square

$$\begin{array}{cccc} \mathscr{C}_{J_1 \cap J_2} & & & & \mathscr{C}_{J_1} \\ & & & & \downarrow \\ & & & & \downarrow \\ \mathscr{C}_{J_2} & & & & \mathscr{C}_{J_1 \cup J_2} \end{array}$$

induces an equivalence

$$(\mathscr{C}_{J_1}/\mathscr{C}_{J_1\cap J_2})\times(\mathscr{C}_{J_2}/\mathscr{C}_{J_1\cap J_2})\cong(\mathscr{C}_{J_1\cup J_2}/\mathscr{C}_{J_1\cap J_2})$$

(iv). For any $J_1\subseteq J_2$, the projection $\mathscr{C}_{J_2}\to\mathscr{C}_{J_2}/\mathscr{C}_{J_1}$ admits a left adjoint $j_{J_2\smallsetminus J_1,!}:\mathscr{C}_{J_2}/\mathscr{C}_{J_1}\to\mathscr{C}_{J_2}$ and a right adjoint $j_{J_2\smallsetminus J_1,*}:\mathscr{C}_{J_2}/\mathscr{C}_{J_1}\to\mathscr{C}_{J_2}$.

Proposition 1.6. There is a homomorphism $j_{J_2 \setminus J_1,!} \to j_{J_2 \setminus J_1,*}$ and its image $j_{J_2 \setminus J_1,!*} = \operatorname{im} \left(j_{J_2 \setminus J_1,!} \to j_{J_2 \setminus J_1,*} \right)$ sends irreducibles to irreducibles. Therefore, it is exact.

- Corollaire 1.7. (i). For each G-orbit $X_i \subseteq X$ and $x \in X_i$, there is an equivalence $\operatorname{Mod}(\mathcal{D}_{\widetilde{X}_i}, G) \cong \operatorname{Mod}(\operatorname{U}(\mathfrak{h}), G_{(x)})$
- (ii). The categories $\operatorname{Mod}_{\operatorname{fin},h}(\widetilde{\mathcal{D}}_X,G)$ and $\operatorname{Mod}_{\operatorname{fin},\operatorname{rh}}(\mathcal{D}_{\widetilde{X}},G)$ satisfies the Jordan-Hölder property. The irreducible objects of it are parametried by a pair of $i \in I$ and irreducible object $V \in \operatorname{Mod}(U(\mathfrak{h}),G_{(x)})$.
- (iii). Every object in $\operatorname{Mod}_{\operatorname{fin,h}}(\widetilde{\mathcal{D}}_X,G)$ is tame (has regular singularities). If $\lambda \in \pi_0(G) \backslash \mathfrak{h}_{\mathbf{Z}}^*$, then any object $\operatorname{Mod}(\mathcal{D}_{\widetilde{X}},G)_{\lambda}$ is of geometric origin.

WILLE LIU