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Abstract. A new tautological equation of M3,1 in codimension
3 is derived and proved, using the invariance condition explained
in [1, 6, 8, 9]. An equivalent equation is independently found by
Kimura–Liu [5] through a different method.

1. Introduction

This work is a continuation of [1]. We apply the same technique
to R3(M3,1) to find a tautological equation. A general scheme and
practical steps, as well as notations used in this paper, can be found in
[8] and [1].

1.1. Tautological rings. One reference for tautological rings, which
is close to the spirit of the present paper, is R. Vakil’s survey article
[10].

Let Mg,n be the moduli stacks of stable curves. Mg,n are proper, ir-
reducible, smooth Deligne–Mumford stacks. The Chow rings A∗(Mg,n)
over Q are isomorphic to the Chow rings of their coarse moduli spaces.
The tautological rings R∗(Mg,n) are subrings of A∗(Mg,n), or subrings
of H2∗(Mg,n) via cycle maps, generated by some “geometric classes”
which will be described below.

The first type of geometric classes are the boundary strata. Mg,n

have natural stratification by topological types. The second type of
geometric classes are the Chern classes of tautological vector bundles.
These includes cotangent classes ψi, Hodge classes λk and κ-classes κl.

To give a precise definition of the tautological rings, some natural
morphisms between moduli stacks of curves will be used. The forgetful
morphisms

(1) fti : Mg,n+1 → Mg,n

The second author is partially supported by NSF and AMS Centennial
Fellowship.
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forget one of the n+ 1 marked points. The gluing morphisms

(2) Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2
, Mg−1,n+2 → Mg,n,

glue two marked points to form a curve with a new node. Note that
the boundary strata are the images (of the repeated applications) of
the gluing morphisms, up to factors in Q due to automorphisms.

Definition 1. The system of tautological rings {R∗(Mg,n)}g,n is the
smallest system of Q-unital subalgebra (containing classes of type one
and two, and is) closed under push-forwards via the forgetful and gluing
morphisms.

The study of the tautological rings is one of the central problems
in moduli of curves. The readers are referred to [10] and references
therein for many examples and motivation. Note that the tautological
rings are defined by generators and relations. Since the generators are
explicitly given, the study of tautological rings is the study of relations
of tautological classes.

1.2. Invariance Constraints. Here some ingredients in [8] and [9]
will be briefly reviewed.

The moduli of curves can be stratified by topological types. Each
boundary stratum can be conveniently presented by the (dual) graphs
of its generic curves in the following way. To each stable curve C

with marked points, one can associate a dual graph Γ. Vertices of
Γ correspond to irreducible components. They are labeled by their
geometric genus. Assign an edge joining two vertices each time the two
components intersect. To each marked point, one draws an half-edge
incident to the vertex, with the same label as the point. Now, the
stratum corresponding to Γ is the closure of the subset of all stable
curves in Mg,n which have the same topological type as C. For each
dual graph Γ, one can decorate the graph by assigning a monomial, or
more generally a polynomial, of ψ to each half-edge and κ classes to
each vertex. The tautological classes in Rk(Mg,n) can be represented
by Q-linear combinations of decorated graphs. Since there is no κ, λ-
classes involved in this paper, they will be left out of discussions below.

For typesetting reasons, it is more convenient to denote a decorated
graph by another notation, inspired by Gromov–Witten theory, called
gwi. Given a decorated graph Γ.

• For the vertices of Γ of genus g1, g2, . . ., assign a product of
“brackets” 〈〉g1

〈〉g2
. . .. To simplify the notations, 〈〉 := 〈〉0.

• Assign each half-edge a symbol ∂∗. The external half-edges use
super-indices ∂x, ∂y, . . ., corresponding to their labeling. For
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each pair of half-edges coming from one and the same edge,
the same super-index will by used, denoted by Greek letters
(µ, ν, . . ..) Otherwise, all half-edges should use different super-
indices.

• For each decoration to a half-edge a by ψ-classes ψk, assign a
subindex to the corresponding half-edge ∂a

k .
• For each a given vertex 〈〉g with m half-edges, n external half-

edges, an insertion is placed in the vertex 〈∂x
k1
∂

y
k2
. . . ∂

µ
k′∂ν

k′′ . . .〉g.

The key tool employed in this paper is the existence of linear oper-
ators

(3) rl : Rk(Mg,n) → Rk−l+1(M
•

g−1,n+2), l = 1, 2, . . . ,

where the symbol • denotes the moduli of possibly disconnected curves.
rl is defined as an operation on the decorated graphs. The output
graphs have two more markings, which are denoted by i, j. In terms of
gwis,

rl (〈∂
µ
k′ . . .〉g′ . . . 〈∂

µ
k′′ . . .〉g′′)

=
1

2

(

〈∂i
k′+l . . .〉g′ . . . 〈∂

j
k′′ . . .〉g′′ + 〈∂j

k′ . . .〉g′〈∂
i
k′′+l . . .〉g′′

)

+
1

2
(−1)l−1

(

〈∂j
k′+l . . .〉g′ . . . 〈∂

i
k′′ . . .〉g′′ + 〈∂i

k′ . . .〉g′〈∂
j
k′′+l . . .〉g′′

)

+ . . .

+
1

2

l−1
∑

m=0

(−1)m+1〈∂i
l−1−m∂

j
m∂

µ
k′ . . .〉g′−1 . . . 〈∂

µ
k′′ . . .〉g′′ + . . .

+
1

2

l−1
∑

m=0

(−1)m+1〈∂µ
k′ . . .〉g′ . . . 〈∂

i
l−1−m∂

j
m∂

µ
k′′ . . .〉g′′−1

+
1

2

(

l−1
∑

m=0

(−1)m+1

g′
∑

g=0

∂
µ
k′ . . .

(

〈∂i
l−1−m〉g〈∂

j
m〉g′−g

)

)

〈∂µ
k′′ . . .〉g′′ + . . .

+
1

2
〈∂µ

k′ . . .〉g′

(

l−1
∑

m=0

(−1)m+1

g′′
∑

g=0

∂
µ
k′′ . . .

(

〈∂i
l−1−m〉g′′〈∂

j
m〉g′′−g

)

)

,

(4)

where the notation ∂
µ
k . . . (〈∂

i
l−1−m〉g1

〈∂j
m〉g2

) means that the half-edge
insertions ∂µ

k . . . acts on the product of vertices 〈∂i
l−1−m〉g1

〈∂j
m〉g2

by
Leibniz rule. Note that 〈. . .〉−1 := 0.

Note that one class in Rk(Mg,n) may have more than one graphical
presentations coming from tautological equations. It is highly non-
trivial that certain combination of these graphical operations would
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descend to operations on Rk(Mg,n). This was originally Invariance
Conjecture 1 in [8], and now the following Invariance Theorem.

Theorem. ([9] Theorem 5) rl is well-defined. That is, if

E = 0

is a tautological equation in Rk(Mg,n),

rl(E) = 0.

Remarks. (i) In terms of graphical operations, the first two lines of
equation (4) stand for “cutting edges”; the middle two for “genus re-
duction”; the last two for “splitting vertices”. These are explained in
[8].

(ii) In this paper, only l = 1 case will be used.

1.3. The algorithm of finding tautological equations. Our way
of finding this equation is fairly simple.

(a) By Graber–Vakil’s (∗) Theorem [4] or Getzler–Looijenga’s Hodge
number calculations [3], there is a new equation in R3(M3,1).

(b) Apply Invariance Theorem (Theorem 5 [8]) to obtain the coef-
ficients of the equation.

(b) gives a necessary condition. Combined with (a), this generates
and proves the new equation.

In the case of R3(M3,1), we first identify 30 “potentially indepen-
dent” decorated graphs with decorations coming from ψ-classes only.
This is done in Section 2. A general combination of these 30 decorated
graphs is written as

E =

30
∑

k=1

ck(k)

where (k) denote the k-th decorated graph and ck are the unknown
coefficient to be found. Suppose that

E = 0

is a tautological equation. Application of Invariance Theorem implies
that

r1(E) = 0,

where
r1 : R3(M3,1) → R3(M

•

2,3)

By analyzing the properties of the image in R3(M
•

2,3), which is known

by works in genus one and two, 1 we obtain a system of homogeneous

1See [1] and references therein.
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linear equations on ci, which will be equations (5)-(53). This system
is potentially very over-determined, as there are more equations than
variables. However, the Invariance Theorem predicts that this system
of linear equations uniquely determines ck if there is a nontrivial tau-
tological equation. (ck = 0 is a trivial solution.)

1.4. Motivation. Our motivation was quite simple. In the earlier
work [3, 1], the conjectural framework is shown to be valid in genus
one and two. While it is satisfactory to learn that all previous equa-
tions can be derived in this framework, the Conjectures predicts the
possibility of finding all tautological equations under this framework.
This work is set to be the first step towards this goal.

The choice of codimension 3 in M3,1 is almost obvious. First of all,
the Invariance Conjectures works inductively. Given what we know
about genus one and two, it is only reasonable to proceed to either
M2,n for n ≥ 4 or M3,1. Secondly, one also knows from the Theorem

of Graber–Vakil [4] that ψ3 on M3,1 is rational equivalent to a sum
of boundary strata containing at least one (geometrical) genus zero
component. Thirdly, Getzler and Looijenga [3] have shown that there is
only one relation in codimension 3 in M3,1. That makes it a reasonable
place to start.

1.5. Main result. The main result of this paper is the following:

Theorem. There is a new tautological equation for codimension 3
strata in M3,1.
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〈∂x
3 〉3 =

5

72
〈∂x∂µ1∂µ2〉〈∂µ1∂µ3∂µ2〉〈∂µ3〉2 +

1

252
〈∂µ1∂µ2∂µ2〉〈∂x

1∂
µ1〉2

+
5

72
〈∂x∂µ1∂µ1∂µ2〉〈∂µ2

1 〉2 +
5

42
〈∂x∂µ1∂µ2〉〈∂µ1

1 ∂µ2〉2

+
41

21
〈∂x∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2

1 〉2 +
11

40320
〈∂x∂µ1∂µ2∂µ2〉〈∂µ1∂µ3∂µ3〉1

+
1

13440
〈∂x∂µ1∂µ2∂µ2〉1〈∂

µ1∂µ3∂µ3〉 +
1

8064
〈∂x∂µ1〉1〈∂

µ1∂µ2∂µ2∂µ3∂µ3〉

+
191

120960
〈∂x∂µ1∂µ2∂µ2∂µ3∂µ3〉〈∂µ1〉1 +

1

5040
〈∂x∂µ1∂µ2〉〈∂µ1∂µ2∂µ3∂µ3〉1

+
1

4032
〈∂x∂µ1∂µ2〉1〈∂

µ1∂µ2∂µ3∂µ3〉 +
17

2880
〈∂x∂µ1∂µ2∂µ3∂µ3〉〈∂µ1∂µ2〉1

+
1

840
〈∂x∂µ1〉1〈∂

µ1∂µ2〉1〈∂
µ2∂µ3∂µ3〉

+
1

336
〈∂x∂µ1∂µ2〉1〈∂

µ1〉1〈∂
µ2∂µ3∂µ3〉

+
1

126
〈∂x∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2∂µ3∂µ3〉1

+
23

5040
〈∂x∂µ1∂µ2∂µ2〉〈∂µ1∂µ3〉1〈∂

µ3〉1

+
17

5040
〈∂x∂µ1〉1〈∂

µ1∂µ2∂µ3∂µ3〉〈∂µ2〉1

+
113

2520
〈∂x∂µ1∂µ2∂µ3∂µ3〉〈∂µ1〉1〈∂

µ2〉1

+
1

210
〈∂x∂µ1∂µ2∂µ3〉〈∂µ1∂µ2∂µ3〉1

+
1

84
〈∂x∂µ1〉1〈∂

µ1∂µ2∂µ3〉〈∂µ2∂µ3〉1

+
211

1260
〈∂x∂µ1∂µ2∂µ3〉〈∂µ1∂µ2〉1〈∂

µ3〉1

+
1

1260
〈∂x∂µ1∂µ2〉1〈∂

µ1∂µ2∂µ3〉〈∂µ3〉1

+
1

630
〈∂x∂µ1∂µ2〉〈∂µ1∂µ2∂µ3〉1〈∂

µ3〉1

+
11

140
〈∂x∂µ1∂µ2〉〈∂µ1∂µ3〉1〈∂

µ2∂µ3〉1

+
4

35
〈∂x∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2∂µ3〉1〈∂
µ3〉1

+
2

105
〈∂x∂µ1〉1〈∂

µ1∂µ2∂µ3〉〈∂µ2〉1〈∂
µ3〉1

+
89

210
〈∂x∂µ1∂µ2∂µ3〉〈∂µ1〉1〈∂

µ2〉1〈∂
µ3〉1

+
1

53760
〈∂x∂µ1∂µ1∂µ2∂µ2∂µ3∂µ3〉 + 0〈∂x∂µ1∂µ2∂µ3〉1〈∂

µ1∂µ2∂µ3〉.
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Remarks. (i) While our paper was under preparation, a preprint by
T. Kimura and X. Liu [5] appeared on the arxiv. There are two major
differences between our results. First, their choice of basis of codimen-
sion 3 strata in M3,1 is different. They use (3′) := 〈∂µ1∂µ2∂µ2〉〈∂x∂

µ1

1 〉2
instead of (3) below. We have checked that their equation is equivalent
to ours. Second, their approach is “traditional”: knowing there must
be a relation from Graber–Vakil, they can then proceed to find the
coefficients based on the evaluation of the Gromov–Witten invariants
of P1.

Our approach is quite different. There are no computer-aided calcu-
lation of the Gromov–Witten invariants. Only linear algebra is involved
in the calculation.

(ii) This technique has been applied to prove some Faber type result
in tautological rings [2]. A corollary of [2] is that there is no relation
between ψ1 and κ1 in R1(M3,1). It is easy to see, however, that there
is a relation of the monomials in κ-classes and ψ-classes. On the other
hand, the reader may amuse himself with the following result.

Proposition 1. There is no (new) relation among the classes in R3(∂M3,1)
and ψ2

1 in R2(M3,1).

This can be shown, for example, by the same technique used in
this paper. Let (k) denotes a basis of these strata. When one sets a
hypothetical equation ck(k) = 0 and imposes the invariance condition,
the only solution is ck = 0 for all k.

Acknowledgement. We are thankful to E. Getzler, R.Pandharipande
and R. Vakil for useful discussions. Part of the work was done during
the second author’s stay in NCTS, whose hospitality is greatly appre-
ciated.

2. Strata of M3,1

We start with enumerating codimension 3 strata in M3,1.
Out of the several strata (allowing ψ classes) of codimension 3 in

M3,1, many of them can be written in terms of the others using WDVV,
TRR’s, Mumford–Getzler’s, Getzler’s and Belorousski-Pandharipande
equations. After applying those equations, we can write all of the strata
in terms of the following ones:
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(1) 〈∂x
3 〉3 (2) 〈∂x∂α∂β〉〈∂µ∂α∂β〉〈∂µ〉2

(3) 〈∂µ∂α∂α〉〈∂x
1∂

µ〉2 (4) 〈∂x∂µ∂µ∂ν〉〈∂ν
1 〉2

(5) 〈∂x∂µ∂ν〉〈∂µ
1 ∂

ν〉2 (6) 〈∂x∂µ∂ν〉〈∂µ〉1〈∂
ν
1 〉2

(7) 〈∂x∂µ∂ν∂ν〉〈∂µ∂α∂α〉1 (8) 〈∂x∂µ∂ν∂ν〉1〈∂
µ∂α∂α〉

(9) 〈∂x∂µ〉1〈∂
µ∂ν∂ν∂α∂α〉 (10) 〈∂x∂µ∂ν∂ν∂α∂α〉〈∂µ〉1

(11) 〈∂x∂µ∂ν〉〈∂µ∂ν∂α∂α〉1 (12) 〈∂x∂µ∂ν〉1〈∂
µ∂ν∂α∂α〉

(13) 〈∂x∂µ∂ν∂α∂α〉〈∂µ∂ν〉1 (14) 〈∂x∂µ〉1〈∂
µ∂ν〉1〈∂

ν∂α∂α〉
(15) 〈∂x∂µ∂ν〉1〈∂

µ〉1〈∂
ν∂α∂α〉 (16) 〈∂x∂µ∂ν〉〈∂µ〉1〈∂

ν∂α∂α〉1
(17) 〈∂x∂µ∂ν∂ν〉〈∂µ∂α〉1〈∂

α〉1 (18) 〈∂x∂µ〉1〈∂
µ∂ν∂α∂α〉〈∂ν〉1

(19) 〈∂x∂µ∂ν∂α∂α〉〈∂µ〉1〈∂
ν〉1 (20) 〈∂x∂µ∂ν∂α〉〈∂µ∂ν∂α〉1

(21) 〈∂x∂µ∂ν∂α〉1〈∂
µ∂ν∂α〉 (22) 〈∂x∂µ〉1〈∂

µ∂ν∂α〉〈∂ν∂α〉1
(23) 〈∂x∂µ∂ν∂α〉〈∂µ∂ν〉1〈∂

α〉1 (24) 〈∂x∂µ∂ν〉1〈∂
µ∂ν∂α〉〈∂α〉1

(25) 〈∂x∂µ∂ν〉〈∂µ∂ν∂α〉1〈∂
α〉1 (26) 〈∂x∂µ∂ν〉〈∂µ∂α〉1〈∂

ν∂α〉1
(27) 〈∂x∂µ∂ν〉〈∂µ〉1〈∂

ν∂α〉1〈∂
α〉1 (28) 〈∂x∂µ〉1〈∂

µ∂ν∂α〉〈∂ν〉1〈∂
α〉1

(29) 〈∂x∂µ∂ν∂α〉〈∂µ〉1〈∂
ν〉1〈∂

α〉1 (30) 〈∂x∂µ∂µ∂ν∂ν∂α∂α〉

3. Setting r1(E) = 0

Let E be a generic linear combination of these strata

E :=

30
∑

k=1

ck(k),

where ck are variables with values in Q. The Invariance Conjectures
predict

r1(E) = 0.

For the output graphs of r1(E), we will pick a basis for the tautological
algebra and set the coefficients of the basis equal to 0. This will produce
a system of linear equations on ck, (1)-(49), which then determines ck
completely. The final equation E = 0, with the specified coefficients,
is thus obtained.

Note that the (new) half-edges i, j in the output graphs are always
assumed to be symmetrized. Some of the graphs will be disconnected.
They are easier to deal with as they involve less relations (e.g. WDVV).
So let us start with the disconnected terms. In each equation, the first
column is a basis vector, followed by its coefficient which is set to zero.

(5) 〈∂x∂α∂β〉〈∂j∂α∂β〉〈∂i
1〉2 : c2 + c4 = 0.

(6) 〈∂x∂i∂α〉〈∂j∂β∂β〉〈∂α
1 〉2 : 3c3 − c4 +

1

24
c6 = 0.
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(7) 〈∂j∂ν∂ν〉〈∂α∂α∂β〉〈∂x∂i∂β〉1 : −
1

80
c3 − c8 +

1

24
c15 = 0.

(8) 〈∂i∂ν∂β〉〈∂β∂x∂ν〉〈∂j∂α∂α〉1 : c7 − c8 − c11 = 0.

(9) 〈∂j∂ν∂ν〉〈∂x∂α∂β〉〈∂i∂α∂β〉1 :
1

30
c3 − c11 +

1

24
c25 = 0.

(10) 〈∂j∂ν∂ν〉〈∂i∂α∂β〉〈∂x∂α∂β〉1 :
1

30
c3 + 2c8 − c12 +

1

24
c24 = 0.

(11) 〈∂j∂ν∂ν〉〈∂x∂i∂α〉〈∂α∂β∂β〉1 : −
1

30
c3 − c7 + c8 +

1

24
c16 = 0.

(12) 〈∂µ∂ν∂ν〉〈∂j∂µ∂α〉〈∂i∂x〉1〈∂
α〉1 : c14 − c15 + c18 − c24 = 0;

(13) 〈∂ν∂α∂α〉〈∂i∂x∂ν〉〈∂j∂µ〉1〈∂
µ〉1 : c15 − c17 + c25 = 0.

(14) 〈∂j∂ν∂ν〉〈∂x∂α∂β〉〈∂i∂α〉1〈∂
β〉1 :

4

5
c3 − c16 +

1

24
c27 = 0.

(15) 〈∂µ∂ν∂ν〉〈∂x∂i∂α〉〈∂j∂µ〉1〈∂
α〉1 : −c3 −

1

240
c6 + c14 − c15 = 0.

(16)

〈∂j∂ν∂ν〉〈∂i∂α∂β〉〈∂x∂α〉1〈∂
β〉1 :

4

5
c3 + c14 + c15 − c18 +

1

12
c28 = 0.

(17) 〈∂j∂ν∂ν〉〈∂x∂i∂α〉〈∂α∂β〉1〈∂
β〉1 : −

4

5
c3 + c15 − c17 +

1

24
c27 = 0.

(18) 〈∂x∂j∂µ〉〈∂µ〉1〈∂
i∂α∂β〉〈∂α∂β〉1 :

1

10
c6 + 2c16 + c22 − c23 = 0.

(19) 〈∂x∂µ∂j〉〈∂i∂α∂β〉〈∂α〉1〈∂
β〉1〈∂

µ〉1 :
7

10
c6 + c27 + c28 −3c29 = 0.

〈∂j∂µ∂ν∂α〉〈∂µ∂ν∂α〉〈∂i∂x〉1 = 〈∂j∂µ∂α∂α〉〈∂µ∂ν∂ν〉〈∂i∂x〉1 :

− c8 + c9 +
1

24
c14 − c21 = 0.

(20)

(21) 〈∂j∂µ∂α〉〈∂µ∂ν∂ν∂α〉〈∂i∂x〉1 : 2c9 − c12 = 0.

(22) 〈∂j∂ν∂ν〉〈∂x∂α∂α∂β〉〈∂i∂β〉1 :
1

48
c3 − c7 +

1

24
c17 = 0.

(23) 〈∂x∂i∂α∂α〉〈∂µ∂ν∂ν〉〈∂j∂µ〉1 : −
1

24
c3 −

1

240
c4 − c8 +

1

24
c14 = 0.
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(24)

〈∂j∂ν∂ν〉〈∂i∂α∂α∂β〉〈∂x∂β〉1 :
1

48
c3 + c8 − 2c9 +

1

24
c14 +

1

24
c18 = 0.

(25) 〈∂j∂ν∂ν〉〈∂x∂i∂α∂β〉〈∂α∂β〉1 :
7

30
c3 + 2c8 − c13 +

1

24
c23 = 0.

(26) 〈∂j∂x∂µ∂µ〉〈∂i∂α∂β〉〈∂α∂β〉1 :
1

10
c4 + 2c7 − c13 +

1

24
c22 = 0.

(27) 〈∂j∂ν∂ν〉〈∂x∂i∂α∂β〉〈∂α〉1〈∂
β〉1 :

13

10
c3 + c15 − c19 +

1

8
c29 = 0.

(28) 〈∂j∂x∂µ∂µ〉〈∂i∂α∂β〉〈∂α〉1〈∂
β〉1 :

7

10
c4 + c17 − c19 +

1

24
c28 = 0.

(29)

〈∂j∂ν∂ν〉〈∂x∂i∂α∂α∂β〉〈∂β〉1 :
23

240
c3 + c8 − 2c10 +

1

24
c15 +

1

12
c19 = 0.

(30)

〈∂j∂x∂µ∂µ〉〈∂i∂α∂α∂β〉〈∂β〉1 :
13

240
c4 + c7 − 2c10 +

1

24
c17 +

1

24
c18 = 0.

(31) 〈∂i∂α∂α∂β∂β〉〈∂x∂j∂µ〉〈∂µ〉1 :
1

960
c6 + c9 − c10 +

1

24
c16 = 0.

(32)

〈∂x∂µ∂j〉〈∂i∂α∂α∂ν〉〈∂µ〉1〈∂
ν〉1 :

13

240
c6 + c16 + c18 − 2c19 +

1

24
c27 = 0.

(33) 〈∂j∂ν∂ν〉〈∂x∂i∂α∂α∂µ∂µ〉 :
1

576
c3 +

1

24
c8 +

1

24
c10 − 3c30 = 0.

(34) 〈∂j∂x∂µ∂µ〉〈∂i∂α∂α∂ν∂ν〉 :
1

960
c4 +

1

24
c7 +

1

24
c9 − 3c30 = 0.

There are several terms of the form ∗〈∂i〉1. If we remove the 〈∂i〉1,
they become terms in M2,2 of codimension 3, and there is a relation
between them which we can find by using Getzler’s relation (with ψ2
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on x and ψ on j). The relation is

0 = −
3

40
〈∂x∂µ∂α∂α〉〈∂y∂µ∂ν〉〈∂ν〉1 +

3

40
〈∂x∂µ∂ν∂α〉〈∂α∂y∂µ〉〈∂ν〉1

−
7

120
〈∂x∂µ∂α〉〈∂α∂y∂µ∂ν〉〈∂ν〉1 +

7

120
〈∂x∂ν∂α〉〈∂α∂y∂µ∂µ〉〈∂ν〉1

+
1

120
〈∂x∂µ∂α〉〈∂α∂µ∂ν〉〈∂y∂ν〉1 −

1

120
〈∂x∂y∂ν∂α〉〈∂α〉1〈∂

µ∂µ∂ν〉

−
1

120
〈∂x∂y∂α〉〈∂ν∂α〉1〈∂

µ∂µ∂ν〉 +
1

120
〈∂y∂µ∂α〉〈∂x∂α〉1〈∂

µ∂ν∂ν〉

+other terms with all vertices of genus 0.

We are going to solve this relation for the term

〈∂x∂µ∂α〉〈∂α∂µ∂ν〉〈∂j∂ν〉1〈∂
i〉1

and find an equation for all of the other terms. Among those, seven of
them are of the form ∗〈∂i〉1〈∂

µ〉1 and are related by WDVV. They can
be written in terms of the following 4 independent vectors.

〈∂α∂α∂j∂ν〉〈∂ν∂x∂µ〉〈∂i〉1〈∂
µ〉1 :

−
3

20
c1 − c2 − 2c3 − 2c5 −

1

24
c6 − c16 + 2c19 − c24 +

1

24
c27 = 0.

(35)

(36) 〈∂α∂α∂x∂ν〉〈∂ν∂j∂µ〉〈∂i〉1〈∂
µ〉1 : −c2 − c4 = 0.

(37)

〈∂α∂α∂µ∂ν〉〈∂ν∂x∂j〉〈∂i〉1〈∂
µ〉1 :

11

240
c1 + c2 +2c3 + c5 − c18 + c24 = 0.

(38)

〈∂α∂j∂ν〉〈∂ν∂x∂µ∂α〉〈∂i〉1〈∂
µ〉1 : −

1

10
c1−2c3−c5+4c19−c23−c24 = 0.

There are additional 4 independent vectors
(39)

〈∂x∂β∂γ〉〈∂γ∂j∂α〉〈∂α∂β〉1〈∂
i〉1 :

1

10
c1+c5+c22−c23−2c25+2c26 = 0.

(40) 〈∂x∂β∂µ〉〈∂µ∂j∂α〉〈∂α〉1〈∂
β〉1〈∂

i〉1 : −
7

10
c1−c6−c28+3c29 = 0.

(41)

〈∂µ∂ν∂ν〉〈∂i∂µ∂α〉〈∂x∂α〉1〈∂
j〉1 :

1

20
c1+c2+c3+c5−c14+c15+c18−c22 = 0.

(42)

〈∂α∂β∂β〉〈∂x∂j∂γ〉〈∂α∂γ〉1〈∂
i〉1 : −

11

240
c1−c2−2c3−c5−c14+c15 = 0.
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The remaining connected strata are all of codimension 3 in M2,3.
There are four induced equations. First of all, by taking Getzler’s
relation in M1,4, adding another marked point, and then identifying
either two of the first four marked points or the fifth marked point with
one of the others. Secondly, by taking the Belorousski-Pandharipande
relation, adding ψ at the marked point x, and then simplifying. The
relations we obtain are the following:

0 = 〈∂x∂i∂µ〉〈∂j∂α∂ν〉〈∂α∂µ∂ν〉1 + 〈∂x∂j∂µ〉〈∂i∂α∂ν〉〈∂α∂µ∂ν〉1

+〈∂x∂α∂µ〉〈∂i∂j∂ν〉〈∂α∂µ∂ν〉1 − 〈∂x∂i∂µ〉〈∂j∂µ∂ν〉〈∂α∂α∂ν〉1

−〈∂x∂i∂µ〉〈∂α∂µ∂ν〉〈∂j∂α∂ν〉1 − 〈∂x∂j∂µ〉〈∂α∂µ∂ν〉〈∂i∂α∂ν〉1

−〈∂i∂j∂µ〉〈∂α∂µ∂ν〉〈∂x∂α∂ν〉1 + other terms,

0 = 〈∂x∂i∂µ〉〈∂α∂α∂ν〉〈∂j∂µ∂ν〉1 − 〈∂x∂α∂µ〉〈∂α∂µ∂ν〉〈∂i∂j∂ν〉1

−〈∂i∂α∂µ〉〈∂α∂µ∂ν〉〈∂x∂j∂ν〉1 + other terms,

0 = 〈∂i∂j∂µ〉〈∂α∂α∂ν〉〈∂x∂µ∂ν〉1 − 〈∂i∂α∂µ〉〈∂α∂µ∂ν〉〈∂j∂x∂ν〉1

−〈∂j∂α∂µ〉〈∂α∂µ∂ν〉〈∂i∂x∂ν〉1 + other terms,

0 = −〈∂µ∂α∂ν〉〈∂µ∂i∂j〉〈∂ν〉1〈∂
x∂α〉1 − 〈∂x∂j∂α〉〈∂α∂µ∂ν〉〈∂µ〉1〈∂

ν∂i〉1

−〈∂x∂i∂α〉〈∂α∂µ∂ν〉〈∂µ〉1〈∂
ν∂j〉1 − 〈∂x∂µ∂α〉〈∂µ∂i∂j〉〈∂α∂ν〉1〈∂

ν〉1

+〈∂x∂α∂ν〉〈∂µ∂i∂j〉〈∂α∂µ〉1〈∂
ν〉1 + 〈∂x∂j∂α〉〈∂i∂µ∂ν〉〈∂µ〉1〈∂

ν∂α〉1

+〈∂x∂i∂α〉〈∂j∂µ∂ν〉〈∂µ〉1〈∂
ν∂α〉1 + other terms.

After solving the four relations above for the following four terms

〈∂x∂i∂µ〉〈∂j∂µ∂ν〉〈∂α∂α∂ν〉1,

〈∂x∂i∂µ〉〈∂α∂α∂ν〉〈∂j∂µ∂ν〉1,

〈∂i∂j∂µ〉〈∂α∂α∂ν〉〈∂x∂µ∂ν〉1,

〈∂x∂µ∂α〉〈∂µ∂i∂j〉〈∂α∂ν〉1〈∂
ν〉1,

we obtain the following equations for the other terms.

(43) 〈∂x∂α∂β〉〈∂β∂i∂j〉〈∂α
1 〉2 : −

1

2
c1 + 4c5 −

1

2
c6 = 0

(44)

〈∂α∂β∂β〉〈∂x∂α∂γ〉〈∂i∂j∂γ〉1 : −
1

40
c1−

1

2
c2−

1

2
c3−

1

2
c5+2c8−

1

2
c15 = 0.

(45)

〈∂µ∂ν∂ν〉〈∂i∂µ∂α〉〈∂j∂x∂α〉1 :
1

240
c1−c3−

1

60
c5+4c8+2c12−c15−3c21 = 0.
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(46)

〈∂x∂β∂γ〉〈∂γ∂i∂α〉〈∂j∂α∂β〉1 : −
1

10
c1−

29

30
c5−4c11+c16+3c20−3c21 = 0.

(47)

〈∂i∂j∂β〉〈∂β∂µ∂ν〉〈∂x∂µ∂ν〉1 :
1

30
c5 − 2c11 +

1

2
c16 + 6c21 −

1

2
c24 = 0.

(48) 〈∂x∂j∂ν〉〈∂i∂α∂β〉〈∂ν∂α∂β〉1 :
1

15
c5+8c11−c16−3c20+3c21 = 0.

(49) 〈∂x∂µ∂ν〉〈∂i∂j∂β〉〈∂µ∂ν∂β〉1 : −
1

30
c5 + 4c11 −

1

2
c16 −

1

2
c25 = 0.

〈∂x∂β∂γ〉〈∂γ∂i∂α〉〈∂j∂α〉1〈∂
β〉1 :

−
7

5
c1 +

7

5
c5 − c6 + 2c23 − 2c24 − 6c25 + 2c26 + c27 = 0.

(50)

(51)

〈∂i∂j∂β〉〈∂β∂µ∂ν〉〈∂x∂µ〉1 :
4

5
c5 + 2c22 + 2c24 − 2c25 +

1

2
c27 − c28 = 0.

(52)

〈∂x∂µ∂j〉〈∂i∂α∂β〉〈∂µ∂α〉1〈∂
β〉1 :

3

5
c5−2c23+2c24+6c25+2c26−c27 = 0.

(53) 〈∂x∂µ∂ν〉〈∂i∂j∂β〉〈∂ν∂β〉1〈∂
µ〉1 : −

4

5
c5 + 2c16 + 2c25 − c27 = 0.
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Solving the equations (5)-(53) gives the following coefficients (let
c1 = −1):

c2 = −
5

72
c3 = −

1

252
c4 =

5

72
c5 =

5

42

c6 =
41

21
c7 = −

11

40320
c8 = −

1

13440
c9 = −

1

8064

c10 =
191

120960
c11 = −

1

5040
c12 = −

1

4032
c13 =

17

2880

c14 =
1

840
c15 = −

1

336
c16 = −

1

126
c17 = −

23

5040

c18 = −
17

5040
c19 =

113

2520
c20 =

1

210
c21 = 0

c22 = −
1

84
c23 =

211

1260
c24 =

1

1260
c25 = −

1

630

c26 =
11

140
c27 = −

4

35
c28 =

2

105
c29 =

89

210

c30 =
1

53760
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